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Theorem (Seetapun). For every uncomputable X and set A ⊆ N, either
A or A (= N \ A) has an infinite subset which does not compute X .

Comments.
• Original motivation was reverse math of Ramsey’s theorem
• First explicitly proved by Dzhafarov and Jockusch

Informally: You can’t encode an infinite amount of information into all
infinite subsets of both a set and its complement

Question. How much finite information can you encode?



Question. How much finite information can you encode into all infinite
subsets of both a set and its complement?

Meta question. How can we measure finite information?
Answer. Use Kolmogorov complexity.

Definition. For a string σ ∈ 2<ω and set X ⊆ P(N), define

C (σ | X ) = maxB∈X CB(σ).

Notation. For A ⊆ N
• [A]ω = set of infinite subsets of A.
• Seet(A) = [A]ω ∪ [A]ω

Question, formal version. Given a string σ and set A ⊆ N, how low can
C (σ | Seet(A)) be compared to C (σ)?



An Example



It is possible to encode “an arbitrary integer larger than N” (for any N).

Definition. For any string σ and number N, define

C (σ | ≥ N) = maxn≥N C (σ | n).

Proposition. For any string σ and number N, there is some set A ⊆ N
such that C (σ | Seet(A)) ≤ C (σ | ≥ N) + O(1).

Proof.
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It is possible to encode “an arbitrary integer larger than N” (for any N).

Definition. For any string σ and number N, define

C (σ | ≥ N) = maxn≥N C (σ | n).

Proposition. For any string σ and number N, there is some set A ⊆ N
such that C (σ | Seet(A)) ≤ C (σ | ≥ N) + O(1).

Theorem (Vereshchagin). For any string σ,

C 0′(σ) = min
N

C (σ | ≥ N)± O(1).

So C (σ | Seet(A)) can be as small as C 0′(σ).

Question. Is there any way for all infinite subsets of both A and A to
lower the complexity of σ below C 0′(σ)?
Answer. No.



The Main Theorem



Observation. C (σ | Seet(A)) can be as small as C 0′(σ).

Question. Is there any way for all infinite subsets of both A and A to
lower the complexity of σ below C 0′(σ)?
Answer. No.

Theorem (Harrison-Trainor and L.). For all strings σ and sets A ⊆ N,

C (σ | Seet(A)) ≥ C 0′(σ)− O(1).

Comment. Standard proofs of Seetapun’s theorem don’t seem to yield
anything like this (at least not obviously).



How to Prove It*
*Sort of.



A much easier theorem. For all strings σ and sets A ⊆ N,

C (σ | Seet(A)) ≥ CX (σ)− O(log |σ|)

where X is a complete Σ1
2 set.

Proof strategy. Assume that for all B ∈ Seet(A), CB(σ) < k and show
that CX (σ | k) ≤ k + O(1).

Idea: Using X , enumerate a list of at most 2k strings that “look like” σ
i.e. a list of at most 2k strings which includes σ

Key property of σ: There is some set A such that for all
B ∈ Seet(A), CB(σ) < k .

Claim 1. At most 2k strings have this property.
Claim 2. X can enumerate the set of strings with this property.



A much easier theorem. For all strings σ and sets A ⊆ N,

C (σ | Seet(A)) ≥ CX (σ)− O(log |σ|)

where X is a complete Σ1
2 set.

Key property of σ: There is some set A such that for all
B ∈ Seet(A), CB(σ) < k .

Claim 1. At most 2k strings have this property.

Proof. Suppose τ1, . . . , τn all have this property...
as witnessed by A1, . . . ,An.

A1

A2

A3

Let B be a boolean combination of the Ai ’s which is infinite.
E.g. B = A1 ∩ A2 ∩ A3 ∩ . . . ∩ An.

Then for each i ≤ n, CB(τi ) < k . Impossible if n > 2k .



A much easier theorem. For all strings σ and sets A ⊆ N,

C (σ | Seet(A)) ≥ CX (σ)− O(log |σ|)

where X is a complete Σ1
2 set.

Key property of σ: There is some set A such that for all
B ∈ Seet(A), CB(σ) < k .

Claim 2. X can enumerate the set of strings with this property.

Proof. The property is Σ1
2.



A much easier theorem. For all strings σ and sets A ⊆ N,

C (σ | Seet(A)) ≥ CX (σ)− O(log |σ|)

where X is a complete Σ1
2 set.

Proof of easier theorem. Assume that for all B ∈ Seet(A), CB(σ) < k .
Identify a property of σ which is
• shared by at most 2k other strings
• and which X can recognize.

Theorem (Harrison-Trainor and L.). For all strings σ and sets A ⊆ N,

C (σ | Seet(A)) ≥ C 0′(σ)− O(1).

Proof idea. Identify a more complicated property of σ which is easier
to compute.



Theorem (Harrison-Trainor and L.). For all strings σ and sets A ⊆ N,

C (σ | Seet(A)) ≥ C 0′(σ)− O(1).

Proof sketch. Assume that for all B ∈ Seet(A), CB(σ) < k .

Definition. A finite set of strings F is safe if there is some partition
A1, . . . ,An of N such that for all i ≤ n and s ⊆ Ai finite,

|s| > 1 =⇒ |{τ | C s(τ) < k} ∪ F | ≤ 2k .

i.e. we can safely assume that (all infinite subsets of) each Ai will give
each τ ∈ F complexity less than k

Claim 1. No safe set has size larger than 2k .
Claim 2. For any safe set F , F ∪ {σ} is also safe.
Therefore every maximal safe set contains σ.

Claim 3. The set of safe sets is 0′-enumerable.
Therefore 0′ can enumerate a maximal safe set.



Theorem (Harrison-Trainor and L.). For all strings σ and sets A ⊆ N,

C (σ | Seet(A)) ≥ C 0′(σ)− O(1).

Proof sketch. Assume that for all B ∈ Seet(A), CB(σ) < k .

Claim 1. No safe set has size larger than 2k .
Claim 2. For any safe set F , F ∪ {σ} is also safe.
Claim 3. The set of safe sets is 0′-enumerable.

The following 0′-program enumerates a maximal safe set.
Set F = ∅
While true:

Search for τ such that F∪ {τ} is safe
Enumerate τ and set F = F∪ {τ}

Key point: A maximal safe set has size at most 2k and contains σ



A Question



Theorem (Harrison-Trainor and L.). For all strings σ and sets A ⊆ N,

C (σ | Seet(A)) ≥ C 0′(σ)− O(1).

In one sense, this theorem is sharp. But it doesn’t seem to completely
capture the following intuition.

Intuition. The only thing you can encode into all infinite subsets of
both a set and its complement is “an arbitrary integer larger than N”
for any single integer N.

Question. Fix a set A ⊆ N. Is there a number N such that for all
strings σ,

C (σ | Seet(A)) ≥ C (σ | ≥ N)− O(1)?


