Seetapun's Theorem and Kolmogorov Complexity

Patrick Lutz
UCLA

Theorem (Seetapun). For every uncomputable X and set $A \subseteq \mathbb{N}$, either A or $\bar{A}(=\mathbb{N} \backslash A)$ has an infinite subset which does not compute X.

Comments.

- Original motivation was reverse math of Ramsey's theorem
- First explicitly proved by Dzhafarov and Jockusch

Informally: You can't encode an infinite amount of information into all infinite subsets of both a set and its complement

Question. How much finite information can you encode?

Question. How much finite information can you encode into all infinite subsets of both a set and its complement?

Meta question. How can we measure finite information?
Answer. Use Kolmogorov complexity.
Definition. For a string $\sigma \in 2^{<\omega}$ and set $\mathcal{X} \subseteq \mathcal{P}(\mathbb{N})$, define

$$
C(\sigma \mid \mathcal{X})=\max _{B \in \mathcal{X}} C^{B}(\sigma)
$$

Notation. For $A \subseteq \mathbb{N}$

- $[A]^{\omega}=$ set of infinite subsets of A.
- $\operatorname{Seet}(A)=[A]^{\omega} \cup[\bar{A}]^{\omega}$

Question, formal version. Given a string σ and set $A \subseteq \mathbb{N}$, how low can $C(\sigma \mid \operatorname{Seet}(A))$ be compared to $C(\sigma)$?

An Example

It is possible to encode "an arbitrary integer larger than N " (for any N). Definition. For any string σ and number N, define

$$
C(\sigma \mid \geq N)=\max _{n \geq N} C(\sigma \mid n)
$$

Proposition. For any string σ and number N, there is some set $A \subseteq \mathbb{N}$ such that $C(\sigma \mid \operatorname{Seet}(A)) \leq C(\sigma \mid \geq N)+O(1)$.

It is possible to encode "an arbitrary integer larger than N " (for any N).
Definition. For any string σ and number N, define

$$
C(\sigma \mid \geq N)=\max _{n \geq N} C(\sigma \mid n)
$$

Proposition. For any string σ and number N, there is some set $A \subseteq \mathbb{N}$ such that $C(\sigma \mid \operatorname{Seet}(A)) \leq C(\sigma \mid \geq N)+O(1)$.
Theorem (Vereshchagin). For any string σ,

$$
C^{0^{\prime}}(\sigma)=\min _{N} C(\sigma \mid \geq N) \pm O(1)
$$

So $C(\sigma \mid \operatorname{Seet}(A))$ can be as small as $C^{0^{\prime}}(\sigma)$.
Question. Is there any way for all infinite subsets of both A and \bar{A} to lower the complexity of σ below $C^{0^{\prime}}(\sigma)$?
Answer. No.

The Main Theorem

Observation. $C(\sigma \mid \operatorname{Seet}(A))$ can be as small as $C^{0^{\prime}}(\sigma)$.
Question. Is there any way for all infinite subsets of both A and \bar{A} to lower the complexity of σ below $C^{0^{\prime}}(\sigma)$?
Answer. No.
Theorem (Harrison-Trainor and L.). For all strings σ and sets $A \subseteq \mathbb{N}$,

$$
C(\sigma \mid \operatorname{Seet}(A)) \geq C^{0^{\prime}}(\sigma)-O(1)
$$

Comment. Standard proofs of Seetapun's theorem don't seem to yield anything like this (at least not obviously).

How to Prove It*

*Sort of.

A much easier theorem. For all strings σ and sets $A \subseteq \mathbb{N}$,

$$
C(\sigma \mid \operatorname{Seet}(A)) \geq C^{X}(\sigma)-O(\log |\sigma|)
$$

where X is a complete Σ_{2}^{1} set.
Proof strategy. Assume that for all $B \in \operatorname{Seet}(A), C^{B}(\sigma)<k$ and show that $C^{X}(\sigma \mid k) \leq k+O(1)$.
Idea: Using X, enumerate a list of at most 2^{k} strings that "look like" σ i.e. a list of at most 2^{k} strings which includes σ

Key property of σ : There is some set A such that for all
$B \in \operatorname{Seet}(A), C^{B}(\sigma)<k$.
Claim 1. At most 2^{k} strings have this property.
Claim 2. X can enumerate the set of strings with this property.

A much easier theorem. For all strings σ and sets $A \subseteq \mathbb{N}$,

$$
C(\sigma \mid \operatorname{Seet}(A)) \geq C^{X}(\sigma)-O(\log |\sigma|)
$$

where X is a complete Σ_{2}^{1} set.
Key property of σ : There is some set A such that for all $B \in \operatorname{Seet}(A), C^{B}(\sigma)<k$.

Claim 1. At most 2^{k} strings have this property.
Proof. Suppose $\tau_{1}, \ldots, \tau_{n}$ all have this property...
as witnessed by A_{1}, \ldots, A_{n}.

Let B be a boolean combination of the A_{i} 's which is infinite.
E.g. $B=A_{1} \cap \overline{A_{2}} \cap \overline{A_{3}} \cap \ldots \cap A_{n}$.

Then for each $i \leq n, C^{B}\left(\tau_{i}\right)<k$. Impossible if $n>2^{k}$.

A much easier theorem. For all strings σ and sets $A \subseteq \mathbb{N}$,

$$
C(\sigma \mid \operatorname{Seet}(A)) \geq C^{X}(\sigma)-O(\log |\sigma|)
$$

where X is a complete Σ_{2}^{1} set.
Key property of σ : There is some set A such that for all $B \in \operatorname{Seet}(A), C^{B}(\sigma)<k$.

Claim 2. X can enumerate the set of strings with this property.
Proof. The property is Σ_{2}^{1}.

A much easier theorem. For all strings σ and sets $A \subseteq \mathbb{N}$,

$$
C(\sigma \mid \operatorname{Seet}(A)) \geq C^{X}(\sigma)-O(\log |\sigma|)
$$

where X is a complete Σ_{2}^{1} set.
Proof of easier theorem. Assume that for all $B \in \operatorname{Seet}(A), C^{B}(\sigma)<k$. Identify a property of σ which is

- shared by at most 2^{k} other strings
- and which X can recognize.

Theorem (Harrison-Trainor and L.). For all strings σ and sets $A \subseteq \mathbb{N}$,

$$
C(\sigma \mid \operatorname{Seet}(A)) \geq C^{0^{\prime}}(\sigma)-O(1)
$$

Proof idea. Identify a more complicated property of σ which is easier to compute.

Theorem (Harrison-Trainor and L.). For all strings σ and sets $A \subseteq \mathbb{N}$,

$$
C(\sigma \mid \operatorname{Seet}(A)) \geq C^{0^{\prime}}(\sigma)-O(1)
$$

Proof sketch. Assume that for all $B \in \operatorname{Seet}(A), C^{B}(\sigma)<k$.
Definition. A finite set of strings F is safe if there is some partition A_{1}, \ldots, A_{n} of \mathbb{N} such that for all $i \leq n$ and $s \subseteq A_{i}$ finite,

$$
|s|>1 \Longrightarrow\left|\left\{\tau \mid C^{s}(\tau)<k\right\} \cup F\right| \leq 2^{k}
$$

i.e. we can safely assume that (all infinite subsets of) each A_{i} will give each $\tau \in F$ complexity less than k

Claim 1. No safe set has size larger than 2^{k}.
Claim 2. For any safe set $F, F \cup\{\sigma\}$ is also safe.
Therefore every maximal safe set contains σ.
Claim 3. The set of safe sets is 0^{\prime}-enumerable.
Therefore 0^{\prime} can enumerate a maximal safe set.

Theorem (Harrison-Trainor and L.). For all strings σ and sets $A \subseteq \mathbb{N}$,

$$
C(\sigma \mid \operatorname{Seet}(A)) \geq C^{0^{\prime}}(\sigma)-O(1)
$$

Proof sketch. Assume that for all $B \in \operatorname{Seet}(A), C^{B}(\sigma)<k$.
Claim 1. No safe set has size larger than 2^{k}.
Claim 2. For any safe set $F, F \cup\{\sigma\}$ is also safe.
Claim 3. The set of safe sets is 0^{\prime}-enumerable.
The following 0^{\prime}-program enumerates a maximal safe set.

```
Set F = \varnothing
While true:
    Search for }\tau\mathrm{ such that F U{q} is safe
    Enumerate }\tau\mathrm{ and set F = F U{T}
```

Key point: A maximal safe set has size at most 2^{k} and contains σ

A Question

Theorem (Harrison-Trainor and L.). For all strings σ and sets $A \subseteq \mathbb{N}$,

$$
C(\sigma \mid \operatorname{Seet}(A)) \geq C^{0^{\prime}}(\sigma)-O(1)
$$

In one sense, this theorem is sharp. But it doesn't seem to completely capture the following intuition.

Intuition. The only thing you can encode into all infinite subsets of both a set and its complement is "an arbitrary integer larger than N " for any single integer N.

Question. Fix a set $A \subseteq \mathbb{N}$. Is there a number N such that for all strings σ,

$$
C(\sigma \mid \operatorname{Seet}(A)) \geq C(\sigma \mid \geq N)-O(1) ?
$$

