
A different kind of fixed point theorem

MUSA Math Monday 3/17/2025
Patrick Lutz



Prologue: Fixed Point Theorems



Fixed point theorem: Every function f : X → X with property blah blah
blah has a fixed point—i.e. there is some x ∈ X such that f (x) = x

Example.
The Banach fixed point theorem (special case): Suppose f : R→ R is a
function such that for all x , y ∈ R, |f (x)− f (y)| < 0.9|x − y |. Then f
has a fixed point.

Proof. Pick any a ∈ R and define

x0 = a, x1 = f (x0), x2 = f (x1), . . .

Condition on f ensures:
• The sequence x0, x1, x2, . . . converges to some x ∈ R
• For this x , f (x) = x �

Other examples: Brouwer, Schauder, Kakutani, Caristi, Veblen, ...
Common feature: Proofs use limits/compactness/homotopy/etc.

i.e. topology



Today: A different kind of fixed point theorem
with a very different proof



Chapter 1: Quines



Definition. A quine is a program that prints itself

Let’s try to write a quine in Python!

Attempt 1: We need to print something. Here’s how we do that in
Python
Program: print("Hello")
Output: Hello

Attempt 2: Let’s try to print something more relevant
Program: print("print")
Output: print

Attempt 3: Hmmm
Program: print("print(\"print\")")
Output: print("print")

Attempt 4: Hmmmmmmmmmmmmmmm...

Question: How can we possibly ever “catch up to ourselves”???



Question: How can we possibly ever “catch up to ourselves”???

A new idea: Consider the following “English language quine”

Write the following twice, the second time surrounded
by quotes: "Write the following twice, the second time
surrounded by quotes:"

Key idea: Self-reference

Actually, two key ideas:
(1) We can treat English language phrases as both instructions to

follow and a sequence of words
(2) This allows us to apply an English language phrase to itself

Main theme of this talk: We will see these two ideas over and over
again in different settings



Idea: Write a Python quine by trying to copy the English language quine

Program:
(lambda s: print(s + ‘(’ + chr(34) + s + chr(34) + ‘)’))
("(lambda s: print(s + ‘(’ + chr(34) + s + chr(34) + ‘)’))")

Question: What’s going on here?

Answer. In Python:

(1) If s and t are strings, s + t is the concatenation of s and t

(2) chr(34) is another name for the character "
(3) lambda x: f(x) denotes the function x 7→ f (x)

The first line of the program is a function that takes a string s and
prints the string s + (" + s + ") i.e. the same string twice, but the
second time in quotation marks (and parentheses)
The second line is the same as the first line, but in quotation marks (and
parentheses) so it can be used as an input to the function on the first line



Idea: Write a Python quine by trying to copy the English language quine

Program:
(lambda s: print(s + ‘(’ + chr(34) + s + chr(34) + ‘)’))
("(lambda s: print(s + ‘(’ + chr(34) + s + chr(34) + ‘)’))")

The main theme, again:

Two key ideas: Programs can be viewed as both instructions to follow
and sequences of characters.

i.e. code vs. data

This allows us to apply programs to themselves



There are many extensions and variations on quines

One interesting example: the qlock, invented by Martin Kleppe (aka
@aemkei)

A program that prints itself and displays the current time by highlighting
some of its characters

https://aem1k.com/qlock/


Chapter 2: A Fixed Point Theorem



Quines are cool, but...

Two flaws of our construction of a Python quine:
(1) It was ad-hoc and used tricks like chr(34) = "

(2) It doesn’t obviously generalize to show how to build quines in other
programming languages or build things like the qlock

Amazing fact: There is a general theorem that implies the existence of
quines, qlocks, and much more in any reasonable programming language

The theorem: Kleene’s fixed point theorem
(also known as the “second recursion theorem”)



To state Kleene’s fixed point theorem, we need a few definitions

First, fix a “reasonable” programming language
Assume: Each program P takes strings as input and outputs strings

We can view each program P as a string
An annoying detail: Not all computer programs ever stop and output an
answer. Instead, some keep running forever.

Definition. A function f : Strings→ Strings is computable if there is a
program P such that for every string x , P(x) eventually stops and
outputs f (x)

Definition. Two programs P and Q are equivalent, written P ≈ Q, if
they have the same output behavior
i.e. for any input x , either P(x) and Q(x) both run forever, or they both
eventually stop and output the same value
Example: The programs P(x): output 5 and Q(x): output 2 + 3
are equivalent



Theorem (Kleene’s fixed point theorem): For any computable function
f : Strings→ Strings, there is some program P such that f (P) ≈ P

This allows us to write programs that “know” their own code

General pattern:
(1) Let f (x) be the function that, given a string x , outputs the

program that you would write if you knew the program’s code was x
(2) Kleene’s fixed point theorem gives a program P such that f (P) ≈ P

(3) So for any input x , P(x) is equal to f (P)(x)—i.e. to the output of
the program that you would write if you knew P was the code of
the program!

Hard to understand abstractly. Let’s look at some examples



Theorem (Kleene’s fixed point theorem): For any computable function
f : Strings→ Strings, there is some program P such that f (P) ≈ P

Application 1: Quines
Let’s find a program P such that for any input x , P(x) outputs P
Let f be the function which takes a string x and produces a program
which ignores its input and always outputs x
For any “reasonable” programming language, this function will be
computable
If P is a program such that P and f (P) have the same behavior then
since f (P) always outputs P , so must P

Quibble: Before we said that a quine “prints” itself, but we just found a
program that always “outputs” itself

Response to quibble: “Output” and “print” are not precise terms and
roughly mean the same thing



Application 2: Qlocks
The notion of a qlock is not very mathematically precise, so here’s a
(slightly) more formal version:

Definition. A qlock is a program P such that for any h < 24, m < 60
and s < 60, P(h,m, s) prints itself and displays h : m : s by changing
the color of some of its characters

Let f be the function which takes a string x and produces a program
which takes inputs h, m and s and prints x with h : m : s displayed
by changing the color of some of x ’s characters
If P is a program such that P and f (P) have the same behavior then P
must be a qlock

Quibble: What if P is too short to display h : m : s?

Response to quibble: Modify f to make this impossible for any P which
is a fixed point of f



Theorem (Kleene’s fixed point theorem): For any computable function
f : Strings→ Strings, there is some program P such that f (P) ≈ P

In general, this theorem allows us to write programs which know their
own code

The theorem (and its variants) are extremely useful throughout several
parts of logic. Especially proof theory, computability theory and
descriptive set theory

One of those “magical” theorems
Like linearity of expectation, pigeonhole principle, compactness, etc

Recent example: MIP* = RE (which also resolved the Connes
embedding conjecture)



Chapter 3: Russell’s Paradox



Naive set theory:
(1) Everything is a set
(2) Sets contains elements, which are themselves sets
(3) Two sets are the same if and only if they have the same elements
(4) Any collection of sets that you can describe is also a set

Essentially invented by Frege, intended as a foundation for mathematics

An example of the last point: Given sets A and B , we can form the set

{x | x ∈ A or x ∈ B}

also known as A ∪ B

Another example: Given a set A, we can form the set

{x | for all y ∈ x , y ∈ A}

also known as P(A)



Naive set theory:
(1) Everything is a set
(2) Sets contains elements, which are themselves sets
(3) Two sets are the same if and only if they have the same elements
(4) Any collection of sets that you can describe is also a set

Essentially invented by Frege, intended as a foundation for mathematics

Problem: It’s inconsistent. Proved by Russell (sort of)

Proof. Let R be the set of sets that don’t contain themselves. I.e.

R = {x | x /∈ x}.

Question: does R contain itself?
If so: R ∈ R =⇒ R /∈ R . Contradiction
If not: R /∈ R =⇒ R ∈ R . Contradiction

A contradiction either way!



A different view of naive set theory: A set A can be thought of as a
function Sets→ {0, 1}:

A(x) =

{
0 if x /∈ A

1 if x ∈ A.

Translating Russell’s paradox.

Russell set: R = {x | x /∈ x}
Translation: R is the function defined by R(x) = N(x(x)) where
N : {0, 1} → {0, 1} is the function defined by N(0) = 1 and N(1) = 0

Key question: Is R ∈ R?
Translation: What is the value of R(R)?

Key point: By definition, R(R) = N(R(R)).
I.e. R(R) is a fixed point of the function N!



Main idea from previous slide:
(1) View sets as functions Sets→ {0, 1}
(2) Define a set R by R(x) = N(x(x)) where N(0) = 1 and N(1) = 0
(3) By definition, R(R) = N(R(R)). So R(R) is a fixed point of N.

The main theme reappears.

Two key ideas: Sets can be viewed as both individual sets and as
functions from sets to {0, 1}

This allows us to apply sets to themselves



Main idea from previous slide:
(1) View sets as functions Sets→ {0, 1}
(2) Define a set R by R(x) = N(x(x)) where N(0) = 1 and N(1) = 0
(3) By definition, R(R) = N(R(R)). So R(R) is a fixed point of N.

Another view of Russell’s paradox: A machine for making fixed points

Key observation: There is nothing special about the function N in the
argument above

More precisely: Given any function F : {0, 1} → {0, 1}, we can define
R(x) = F (x(x)).
Then by definition, R(R) = F (R(R)). In other words, R(R) is a fixed
point of F

Moreover, the same idea works to produce fixed points in many other
settings



General framework: Suppose that the elements of the set X can be seen
as functions X → Y and every such function is represented by some
element of X
Then every function F : Y → Y has a fixed point

Proof: Given x ∈ X , let x̃ denote the function X → Y that it represents
Define a function R : X → Y by R(x) = F (x̃(x))

Let r ∈ X be such that r̃ = R

Note that R(r) = F (r̃(r)) = F (R(r)). Hence R(r) is a fixed point of F

The theme again: Elements of X can be viewed as both elements of X
and functions X → Y and this lets us apply elements of X to themselves

Since most sets Y have at least one function F : Y → Y without fixed
points, the above argument is often useful in proofs by contradiction
I.e. make an assumption and show by the above argument that it leads
to a fixed point which should exist



Another example: Cantor’s diagonal argument

Theorem (Cantor). There is no surjection g : N→ R

Proof. Suppose there was. Then we can think of each number n ∈ N as
corresponding to a function ñ : N→ {0, 1, . . . , 9} by

ñ(k) = kth digit after the decimal point of g(n)

Since g is a surjection, every function N→ {0, 1, . . . , 9} is represented
in this way (ignoring a few exceptions...).

By the proof we just saw, this gives a contradiction as long as there is
some function {0, 1, . . . , 9} → {0, 1, . . . , 9} with no fixed points

More concretely: define a function R : N→ {0, 1, . . . , 9} by

R(n) = ñ(n) + 1 mod 10

If r ∈ N is such that r̃ = R then

r̃(r) = R(r) = r̃(r) + 1 mod 10

which is impossible



Chapter 4: Proving Kleene’s Theorem



Theorem (Kleene’s fixed point theorem): For any computable function
f : Strings→ Strings, there is some program P such that f (P) ≈ P

Some assumptions about the programming language:

Assumption 1: Each program is a string

Assumption 2: Each program P takes one or more strings as input and
outputs a string

Assumption 3: There is a program Run(x, y) such that for any
program P and string x , Run(P, x) is equal to the output of P(x)
If P(x) runs forever, so does Run(P, x)

If P takes a number of inputs other than 1, then Run(P, x) can have
any behavior
Comment: Run is essentially an interpreter for the programming
language



Theorem (Kleene’s fixed point theorem): For any computable function
f : Strings→ Strings, there is some program P such that f (P) ≈ P

Proof. Let R be the following program:

R(x):
Output the following program:

1. Given input y
2. Let a = Run(x, x)
3. Output Run(f(a), y)

Intuitively: R(x) outputs a program P such that P(y) = f (x(x))(y)
I.e. R(x) ≈ f (x(x)) (assuming x represents a program and x(x) doesn’t
run forever)

Important point: R(x) always eventually stops and outputs something
I.e. R(x) doesn’t run forever

Now let P = R(R). As above, R(R) ≈ f (R(R)), so P ≈ f (P) �

Mysterious!



Theorem (Kleene’s fixed point theorem): For any computable function
f : Strings→ Strings, there is some program P such that f (P) ≈ P

(Obvious?) Question: Why doesn’t this theorem lead to a contradiction?
I.e. use a computable function f such that for all programs P , f (P) 6≈ P

Answer: It is hard to build such a function f because it is hard to
determine the behavior of a program



The main theme, one last time:
Programs can be viewed as both functions on strings and strings
This allows us to apply programs to themselves


