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What does the title mean?

Martin’s conjecture is an ambitious attempt to
classify the behavior of all definable functions on the
Turing degrees.

I will discuss three old results on Martin’s conjecture,
three updates on those old results, and three
questions suggested by those updates.

But first I will explain what Martin’s conjecture is.



Where are the natural intermediate degrees?

It is easy to construct Turing degrees in-between 0
and 0′. So why are all the undecidable problems that
come up in mathematics at least as hard as the
halting problem?

Martin’s conjecture provides a partial explanation of
this phenomenon.

The idea is that natural problems can be used to
define operators on the Turing degrees.



Propaganda for Martin’s conjecture

A “natural” undecidable problem A should be

• Relativizable: for each oracle X ⊆ N, we have
a version of the problem A relative to X , i.e. A
defines an operator X 7→ A(X )

• Degree invariant: equivalent oracles give
equivalent versions of the problem, i.e. if
X ≡T Y then A(X ) ≡T A(Y )

The point: A induces a function on the Turing
degrees. We say that functions like this are Turing
invariant. Martin’s conjecture classifies such
functions.



Possible Turing invariant functions

What Turing invariant functions can you think of?

Smart-aleck answer: Constant functions and the
identity

An old favorite: The Turing jump

More: double jump, triple jump, . . ., hyperjump,
. . ., sharps, . . .

Is that everything (up to Turing equivalence)?



Possible Turing invariant functions

Turing invariant functions: constant functions,
identity, iterates of the jump

Is that everything (up to Turing equivalence)? No!

Theorem (Kleene-Post): ∃y (0 <T y <T 0′)

Relativized version: ∀x ∃y (x <T y <T x ′)

Example: For every Turing degree x , use choice to
pick a y such that x <T y <T x ′

Did we really need the axiom of choice?



Possible functions on the Turing degrees

Example 1: For every degree x , use choice to pick a
y such that x <T y <T x ′

Did we really need the axiom of choice? No!

Example 2: Fix a Turing degree z and define

f (x) =

{
0 if x �T z

x ′ if x ≥T z .

But once you get above z , this is just the jump



Martin’s conjecture, informally

Idea of Martin’s conjecture: Exclude these
types of examples
• Look at the behavior of functions “in the limit”
• Replace the axiom of choice with the axiom of
determinacy (AD)

Martin’s conjecture, super informal version:
Under AD, every Turing invariant function is
eventually equivalent to either a constant function,
the identity or a transfinite iterate of the Turing jump



What does “in the limit” mean?

Definition: A cone of Turing degrees is a set of the
form {x | x ≥T y} (“the cone above y ”)

If f and g are Turing invariant functions:

Definition: f ≡M g if f (x) ≡T g(x) on a cone

Definition: f ≤M g if f (x) ≤T g(x) on a cone

“f is constant on a cone” = f is equivalent to a
constant function

“f is above the identity on a cone” = f ≥M id



What does “in the limit” mean?

The measure theory perspective

If A is a set of Turing degrees:

A has measure 1 if A contains a cone

A has measure 0 if A is disjoint from a cone

This forms a {0, 1}-valued measure on the Turing
degrees, called “Martin measure”

f ≡M g = “f (x) ≡T g(x) for almost every x”

f ≤M g = “f (x) ≤T g(x) for almost every x”



The axiom of determinacy

Martin’s conjecture replaces the axiom of choice with
the axiom of determinacy. Why?

Philosophical reason 1: Proving Martin’s
conjecture under AD means that ZF cannot prove
the existence of weird counterexamples

Philosophical reason 2: Limited forms of
determinacy are provable for most reasonable classes
of “definable functions.” Borel determinacy is in ZF.

Practical reason: AD helps prove structural
theorems, plays well with Martin measure



How to use determinacy in computability theory

Assuming the axiom of determinacy:

Fact: Every set of Turing degrees either contains a
cone or is disjoint from a cone

Fact, restated: The Martin measure is an ultrafilter

Fact, restated again: If a set of Turing degrees is
cofinal (for all x , there is some y ≥T x in the set)
then it contains a cone

The first principle of using determinacy in
computability: Describe what you want, show it
holds cofinally, and let determinacy do the rest



How to use determinacy in computability theory

Example: Jump inversion via nuclear flyswatter

Theorem (jump inversion): Every large enough
Turing degree is the jump of something

Formal version: There is some z such that for every
x ≥T z there is some y such that y ′ ≡T x .

Proof: Let A = {x | ∃y (y ′ ≡T x)}. This set is
cofinal because for each x , x ′ is above x and is in A.
So by determinacy, A contains a cone.

This is a little silly because the Friedberg jump
inversion theorem already says that this holds on the
cone above 0’



Formal statement of Martin’s conjecture

Martin’s conjecture: Assuming the axiom of
determinacy

(1) Every Turing invariant function is either constant
on a cone or above the identity on a cone

(2) The (equivalence classes of) functions which are
above the identity on a cone are well-ordered by
≤M and the successor in this well-order is given
by the Turing jump



Some past results

Several special cases are known.

Uniformly invariant functions Lachlan, Slaman, Steel

Regressive functions Slaman, Steel

Part 2, order-preserving functions Slaman, Steel

I will give an update on each of these results.



Uniformly invariant functions

Definition: If x ≡T y via (i , j) means that Φi(x) = y
and Φj(y) = x

Definition: A Turing invariant function f is uniformly
invariant if there is a function u : N2 → N2 such that

x ≡T y via (i , j) =⇒ f (x) ≡T f (y) via u(i , j)

Theorem (Lachlan): If W is a uniformly invariant r.e.
operator such that W (x) ≥T x for all x then either
W (x) ≡T x on a cone or W (x) ≡T x ′ on a cone

Theorem (Steel, Slaman-Steel): Martin’s conjecture
holds for all uniformly invariant functions



The local perspective

Vittorio Bard has found a new way to understand
some of these results.

Key idea: definition of uniformly invariant function
still makes sense for a function defined on a single
degree.

Notation: If x is a real, let [x ]T denote the set of
reals Turing equivalent to x

Definition: f : [x ]T → [y ]T is uniformly invariant if
there is a function u : N2 → N2 such that

x0 ≡T x1 via (i , j) =⇒ f (x0) ≡T f (x1) via u(i , j).



Bard’s theorem

Definition: f : [x ]T → [y ]T is uniformly invariant if
there is a function u : N2 → N2 such that

x0 ≡T x1 via (i , j) =⇒ f (x0) ≡T f (x1) via u(i , j).

Idea: View [x ]T together with action of Turing
functionals as an algebraic structure. f and u
together form a homomorphism

Theorem (Bard): If f : [x ]T → [y ]T is uniformly
invariant then either f is constant or x ≤T y

Key lemma: Can always assume u is computable



Bard’s theorem

Theorem (Bard): If f : [x ]T → [y ]T is uniformly
invariant then either f is constant or x ≤T y

By determinacy, this theorem easily implies part 1 of
Martin’s conjecture for uniformly invariant functions.

Very sketchy proof: Either f (x) ≥T x on a cone or
f (x) �T x on a cone. In the latter case, Bard’s
theorem implies f is actually a function from Turing
degrees to reals. Use determinacy to fix each bit of
the output.

Obvious question: Does part 2 also arise locally?



Part 2 locally?

Obvious question: Does part 2 also arise locally?

Theorem (Bard-L.): Suppose x ≥T 0′ and W is an
r.e. operator which is uniformly invariant on [x ]T .
Then either W (x) ≡T x ′ or W (x) ≡T x or W is
constant on [x ]T .

This is the local version of Lachlan’s result. What
about the local version for the full part 2?

Question: Suppose f : [x ]T → [y ]T is uniformly
invariant. Must it be the case that either f is
continuous or f (x) ≥T x ′?



Regressive functions

Definition: A Turing invariant function f is called a
regressive function on the Turing degrees if for all x ,
f (x) ≤T x

Theorem (Slaman-Steel): If f is a regressive function
on the Turing degrees then either f is constant on a
cone or f (x) ≡T x on a cone.

Idea of Slaman and Steel’s proof: Condition
on f means we can basically assume it’s continuous.
Combine this with a clever coding argument.

Obvious question: Does this approach still work when
you can’t assume f is continuous?



Is continuity necessary?

Idea of Slaman and Steel’s proof: Condition
on f means we can basically assume it’s continuous.
Combine this with a clever coding argument.

Obvious question: Does this approach still work when
you can’t assume f is continuous?

Question asked by Slaman-Steel: Does the analogous
theorem hold on the hyperarithmetic degrees?

The point is that a regressive function on the
hyperarithmetic degrees can only be assumed to be
Borel, not continuous.



Continuity is not necessary (but it is necessary)

Question asked by Slaman-Steel: Does the analogous
theorem hold on the hyperarithmetic degrees?

Theorem (L.): Suppose f is a hyp-invariant function
such that f (x) ≤H x for all x . Then either f is
constant on a cone of hyperarithmetic degrees or
f (x) ≡H x on a cone of hyperarithmetic degrees.

Key idea: We can’t assume f is continuous, but we
can replace f with a hyp-equivalent continuous
function. We can then use a coding argument to
finish.



Replacing with a continuous function

Key idea: We can’t assume f is continuous, but we
can replace f with a hyp-equivalent continuous
function.

Very sketchy proof: Want to find g such that
g(x) ≤T x and g(x) ≡H f (x) on a cone. It’s enough
to show that the following set contains a cone

A = {x | ∃y (y ≤T x and y ≡H f (x))}.

By determinacy, enough to show A is cofinal. Start
with any z . Since f (z) ≤H z , there is some x ≡H z
such that f (z) ≤T x . Then x ⊕ z is in A, as
witnessed by f (z).



Replacing with a continuous function

Key idea: We can’t assume f is continuous, but we
can replace f with a hyp-equivalent continuous
function.

This trick works for many degree structures. But
surprisingly, it is harder to adapt the coding
argument.

Question: Does Martin’s conjecture hold for
regressive functions on the arithmetic degrees?

Note that there is a known counterexample to
Martin’s conjecture on the arithmetic degrees.



Order preserving functions

Definition: A Turing invariant function f is order
preserving if for all x and y

x ≥T y =⇒ f (x) ≥T f (y).

Theorem (Slaman-Steel): Part 2 of Martin’s
conjecture holds for all Borel, order preserving
functions which are above the identity.

Obvious question: What about part 1?



Order preserving functions

Obvious question: What about part 1?

An interesting idea from Takayuki Kihara:
You can use the Solecki dichotomy to show that if f
is an order preserving function then either f is
constant on a cone or there is some real a such that
on a cone, f (x)⊕ a ≥T x ′.

Solecki dichotomy: Roughly says that (under AD) for
any function f on the reals, either f is a countable
union of partial continuous functions or f “embeds”
the Turing jump



A different approach

Obvious question: What about part 1?

Theorem (L.-Siskind): Part 1 of Martin’s conjecture
holds for all order preserving functions.

The proof can be broken down into three parts:

(1) Define a new class of functions—“measure
preserving functions”

(2) Show that every order preserving function is
either constant on a cone or measure preserving

(3) Show that part 1 of Martin’s conjecture holds for
all measure preserving functions



What is a measure preserving function?

Definition: A Turing invariant function f is measure
preserving if for all x , there is some y such that

z ≥T y =⇒ f (z) ≥T x .

“f goes to infinity in the limit”

Theorem (L.-Siskind): If f is an order preserving
function then either f is constant on a cone or f is
measure preserving.

Proved using a new basis theorem for perfect sets.

Interesting point: This theorem is exactly what’s
needed to finish Kihara’s proof

I think that understanding this better may prove
important.



A surprise

Equivalent Definition of measure preserving: A Turing
invariant function f is measure preserving if the
function it induces on the Turing degrees preserves
the Martin measure (in the sense of ergodic theory).

Theorem (L.-Siskind): Part 1 of Martin’s conjecture
holds for all measure preserving functions

This theorem connects Martin’s conjecture to a
statement about the Rudin-Keisler order on
ultrafilters on the Turing degrees!



Some measure theory background

If µ is a measure on X and f : X → Y is a function

Definition: The pushforward of µ by f is the measure
given by f∗µ(A) = µ(f −1(A))

Definition: f is measure preserving if X = Y and
f∗µ = µ

If µ and ν are ultrafilters on X

Definition (Rudin-Keisler order): µ ≤RK ν if there is
some f : X → X such that f∗ν = µ

Principal ultrafilters are ≤RK -minimal. If X is an
ordinal then the normal ultrafilters are ≤RK -minimal
above the principal ultrafilters



Martin’s conjecture and the Rudin-Keisler order

Equivalent definition, restated: A function f on the
Turing degrees is measure preserving if and only if

f∗(Martin measure) = Martin measure

Corollary: Part 1 of Martin’s conjecture holds iff for
all nonprincipal ultrafilters µ on the Turing degrees
• µ is not strictly below Martin measure in the
Rudin-Keisler order
• and if µ is Rudin-Keisler equivalent to Martin
measure then µ is Martin measure

Can we at least prove one of the two bullet points?



Martin’s conjecture and the Rudin-Keisler order

Question: Is there any ultrafilter on the Turing
degrees which is strictly below Martin measure in the
Rudin-Keisler order?

One way to give a positive answer is to prove the
following statement, which was asked by Andrew
Marks:

(Assuming AD) Every function f on the reals is either
constant or injective on some pointed perfect tree.



Conclusions

Martin’s conjecture is an old conjecture in
computability theory.

Much of what’s known about it was proved in the
1970s and 1980s.

But recently several promising new directions have
been discovered.

What’s next for Martin’s conjecture?


