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Question. What are the “natural” functions on the Turing degrees?

Answer. The Turing jump and its transfinite iterates.

constant identity Turing double . . . omega . . . hyper-
functions function jump jump . . . jump . . . jump

x 7→ c x 7→ x x 7→ x ′ x 7→ x ′′ . . . x 7→ x (ω) . . . x 7→ Ox

Goal of this talk. Discuss work on formalizing intuition about natural
functions on the Turing degrees using the framework of Martin’s
conjecture, with a focus on functions above the hyperjump.

Notation. DT = Turing degrees, Id(x) = identity function on DT ,
J(x) = Turing jump, H(x) = Ox = hyperjump



Martin’s conjecture



Two examples of “weird” functions on the Turing degrees.

Example 1. For each x , use choice to pick y such that x <T y <T x ′

and set f (x) = y .

Example 2. For each x , define

g(x) =

{
x if x �T 0′

x ′ if x ≥T 0′.

Idea of Martin’s conjecture: Rule out such pathological functions by
• Looking at the behavior of functions “in the limit”
• Replacing the Axiom of Choice with the Axiom of Determinacy

(AD)

Martin’s conjecture, informally. Under AD, every function
f : DT → DT is either eventually constant, eventually the identity or
eventually a transfinite iterate of the Turing jump



Idea of Martin’s conjecture: Rule out such pathological functions by
• Look at the behavior of functions “in the limit”
• Replace the Axiom of Choice with the Axiom of Determinacy (AD)

Definition. A cone of Turing degrees is a set of the form {x | x ≥T y}

Definition. Suppose f , g : DT → DT .
• f ≡M g if f (x) ≡T g(x) on a cone
• f ≤M g if f (x) ≤T g(x) on a cone.

Martin’s conjecture classifies functions on the Turing degrees up to ≡M

equivalence



Idea of Martin’s conjecture: Rule out such pathological functions by
• Look at the behavior of functions “in the limit”
• Replace the Axiom of Choice with the Axiom of Determinacy (AD)

Axiom of Determinacy: Contradicts the Axiom of Choice and
consistent relative to large cardinals

Theorem (Martin). Under AD, every set of Turing degrees either
contains a cone or is disjoint from a cone.

Definition. A set A ⊆ DT is cofinal if for all x , there is some y ≥T x
such that y ∈ A.

Theorem, restated. Under AD, if a set of Turing degrees is cofinal then
it contains a cone.

Note. There are a number of variations of AD, e.g. AD+, ADR,
AD + V = L(R). We will conflate these for the purposes of this talk.



Theorem (Martin). Under AD, if a set of Turing degrees is cofinal then
it contains a cone.

Example: jump inversion via nuclear flyswatter. For every x on some
cone, there is some y such that y ′ ≡T x .

Proof. By AD, it is enough to show this is true cofinally. Fix a and we
will show it holds above a.
Let x = a′. Then for some y (namely a itself), y ′ ≡T x . Since x ≥T a
we are done.



Martin’s conjecture. Assuming AD,
(1) Every function f : DT → DT is either constant on a cone or above

the identity on a cone (i.e. f ≥M Id).
(2) The ≡M -equivalence classes of functions which are above the

identity on a cone are well-ordered by ≤M and the successor in
this well-order is given by the Turing jump (i.e. the successor of f
is J ◦ f ).

In a sense, the conjecture implies that every function above the identity
is equivalent to a transfinite iterate of the jump, but it does not give us
a concrete description of these functions.



Order-preserving functions



Definition. A function f : DT → DT is order-preserving if for all x , y

x ≥T y =⇒ f (x) ≥T f (y).

Theorem (L.-Siskind). Part 1 of Martin’s conjecture holds for all
order-preserving functions.

Theorem (Slaman-Steel). Part 2 of Martin’s conjecture holds for all
order-preserving functions f ≤M H.

Actually, Slaman and Steel prove more: an explicit description of
all order-preserving functions f : DT → DT such that Id ≤M f ≤M H.



Actually, Slaman and Steel prove more: an explicit description of
all order-preserving functions f : DT → DT such that Id ≤M f ≤M H.

Recall. For any x ∈ DT , ωx
1 denotes the least ordinal with no

presentation computable from x . If α < ωx
1 then x (α), the αth jump of

x , is well-defined and x (α) <T H(x).

Observation. For any α < ω1, Jα(x) = x (α) is well-defined on a cone
and Jα <M H.

Theorem (Slaman-Steel). For any order-preserving f : DT → DT , if
Id ≤M f ≤M H then either
(1) there is some α < ω1 such that f ≡M Jα

(2) or f ≡M H.

Question 1. Can Slaman and Steel’s results be extended to all
order-preserving functions?

Question 2. Is there a concrete description of the functions above the
hyperjump?



Functions above the hyperjump



Question. What are the “natural” functions between the hyperjump and
the double hyperjump?

Some obvious examples. H(x), J(H(x)), J2(H(x)), . . . , Jα(H(x)), . . .

Question. Are there any others?

Answer. Yes! For example, define f (x) = H(x)(ω
x
1).

Note that f is well-defined: for any x , ωx
1 < ω

H(x)
1 = ωx

2 .

A more general example. Let α : DT → ω1 be any function such that
for all x , α(x) < ωx

2 . Define f (x) = H(x)(α(x)).
f (x) is well-defined and below H(H(x)) on a cone.



A more general example. f (x) = H(x)(α(x)) for any function
α : DT → ω1 such that α(x) < ωx

2 .

The class of functions DT → ω1 is nicely behaved under AD.

Definition. For any functions α, β : DT → ω1, define α ≤M β to mean
α(x) ≤ β(x) on a cone.

Proposition. The collection of functions DT → ω1 is pre-well-ordered
by ≤M .

Corollary. The collection of functions

{H(x)(α(x)) | α : DT → ω1 and for all x , α(x) < ωx
2}

is well-ordered by ≤M .

Theorem (L.-Siskind). For any order-preserving f : DT → DT , if
H ≤M f <M H ◦ H then for some function α : DT → ω1,
f ≡M H(x)(α(x)).



The proof of the Slaman-Steel theorem



Theorem (Slaman-Steel). For any order-preserving f : DT → DT , if
Id ≤M f <M H then there is some α < ω1 such that f ≡M Jα.

Theorem (Posner-Robinson). For any x >T 0, there is some g such
that x ⊕ g ≥T g ′.
If x is not computable, it looks like the jump relative to some g .

Generalized Posner-Robinson Theorem (Jockusch-Shore). Fix x and
α < ωCK

1 and suppose that for all β < α, 0(β) <T x . Then there is
some g such that x ⊕ g ≥T g (α).
If x is strictly above 0(β) for each β < α then x looks like the α-jump
relative to some g .

Relativized version. Fix x , y and α < ωx
1 and suppose that for all

β < α, x (β) <T y . Then there is some g ≥T x such that
y ⊕ g ≥T g (α).



Theorem (Slaman-Steel). For any order-preserving f : DT → DT , if
Id ≤M f <M H then there is some α < ω1 such that f ≡M Jα.

Proof. Let α be the least ordinal such that for all x on a cone, f (x) is
not strictly above x (α). We will show f ≡M Jα.
Enough to show f (x) ≥T x (α) cofinally. So fix x and we will show this
happens somewhere above x .
For every β < α, x (β) <T f (x). So by the generalized Posner-Robinson
theorem, there is some g ≥T x such that f (x)⊕ g ≥T g (α).
Now calculate:

f (g) ≥T f (x)⊕ f (g) (f is order-preserving and x ≤T g)
≥T f (x)⊕ g (f ≥M Id)

≥T g (α) (by choice of g).



Theorem (L.-Siskind). For any order-preserving f : DT → DT , if
H ≤M f <M H ◦ H then for some α : DT → ω1, f ≡M H(x)α(x).

Proof attempt. Let α be the least ordinal such that for all x on a cone,
f (x) is not strictly above x (α) α(x) = least ordinal such that f (x) is not
strictly above H(x)(α(x)). We will show f ≡M Jα f (x) ≡M H(x)(α(x)).
Enough to show f (x) ≥T x (α)f (x) ≥T H(x)(α(x)) cofinally. So fix x
and we will show this happens somewhere above x .
For every β < α, x (β) <T f (x)β < α(x), H(x)(β) <T f (x). So by the
generalized Posner-Robinson theorem, there is some g ≥T x such that
f (x)⊕ g ≥T g (α) f (x)⊕ g ≥T H(g)(α(x)).
Now calculate:

f (g) ≥T f (x)⊕ f (g) (f is order-preserving and x ≤T g)
≥T f (x)⊕ g (f ≥M Id)

≥T H(g)(α(x)) (by choice of g).

Two problems: first, need an appropriate Posner-Robinson theorem.
Second, need f (g) ≥T H(g)(α(g)) not H(g)(α(x)).



Fixing the proof



Theorem (L.-Siskind). For any order-preserving f : DT → DT , if
H ≤M f <M H ◦ H then for some α : DT → ω1, f ≡M H(x)α(x).

Problems.
(1) Need an appropriate version of the Posner-Robinson theorem.
(2) Need to know that the real g witnessing the Posner-Robinson

theorem preserves α, i.e. α(g) = α(x).



Problem 1. Need an appropriate version of Posner-Robinson theorem.

Solution 1. The necessary version of Posner-Robinson can be proved
using Jockusch-Shore + hyperjump inversion.

Theorem. Fix x and α < ωCK
2 . Suppose that for all β < α, O(β) <T x .

Then for some g , x ⊕ g ≥T H(g)(α).

Proof. By the generalized Posner-Robinson theorem relative to O,
there is some h ≥T O such that x ⊕ h ≥T h(α).
Since h ≥T O, we can apply hyperjump inversion to get g such that

H(g) ≡T g ⊕O ≡T h.

Now calculate

x ⊕ g ≥T x ⊕ h (x ≥T O and g ⊕O ≥T h)

≥T h(α) (by choice of h)

≥T H(g)(α) (since H(g) ≡T h).



Problem 2. Need the real g witnessing Posner-Robinson to preserve
α : DT → ω1.

Solution 2. Classification of functions DT → ω1 below x 7→ ωx
2 .

Theorem (Siskind). If α : DT → ω1 is strictly below x 7→ ωx
2 then there

is some σ : ω1 → ω1 such that on a cone, α(x) = σ(ωx
1 ).

The proof works by comparing the ultrapower by the cone measure on
DT to the iterated ultrapower by the club filter.

Upshot. It is enough to show that g preserves ωCK
1 .

But this follows from our proof of the existence of g .
Recall that g was found by applying hyperjump inversion to some
h ≥T O. And it is well-known that

H(g) ≡T g ⊕O =⇒ ωg
1 = ωCK

1 .



Past the double hyperjump



These ideas work well past the double hyperjump.

In particular: there is some long initial segment of the ≤M order
where every function has the form x 7→ Hα(x)(x)(β(x)) for some
functions α, β : DT → ω1.

The three ingredients.
(1) An appropriate version of the Posner-Robinson theorem
(2) A classification of functions DT → ω1

(3) A proof that the real witnessing the Posner-Robinson theorem
preserves appropriate ordinal-valued functions.

Ingredient 1 follows relatively easily from known proofs of the
Posner-Robinson theorem for the hyperjump (due to Slaman and
written up by Jananthan and Simpson)



Ingredient 2: classification of functions DT → ω1

Notation. For any α : DT → ω1, let |α| denote the rank of α in the
≤M well-order.

Technical definition. Let C be the set of uniform indiscernibles, i.e.
ordinals α such that for all x ∈ 2ω, α is a Silver indiscernible for L[x ].

Theorem (Siskind). For every function α : DT → ω1, there is some
σ : ωn

1 → ω1 and functions β1, . . . , βn : DT → ω1 such that

α(x) = σ(β1(x), . . . , βn(x))

and for each i , |βi | ∈ C .

Upshot. When proving instances of Martin’s conjecture for
order-preserving functions using the strategy explained earlier, it
suffices to preserve ordinal valued functions whose ranks are in C .



Ingredient 3: Preserving ordinal valued functions.

Definition. An ordinal α < ω1 is admissible if for some x , α = ωx
1 and

admissible relative to x if for some y ≥T x , α = ωy
1 .

Theorem (Steel). For some long initial segment of ≤M , if α : DT → ω1
has rank in C then for all x on a cone, α(x) is either admissible relative
to x or the limit of ordinals which are admissible relative to x .

Thus it makes sense to focus on proving that the Posner-Robinson
theorem has witnesses which preserve admissibility.



Preserving admissibility



In many cases, it is possible to prove versions of the Posner-Robinson
theorem while preserving admissibility of many ordinals.

Kumabe-Slaman forcing. Conditions consist of a finite set Φ ⊆ ω and a
finite set F ⊆ 2ω.

Key point. The generic is formed using only the finite subsets of ω and
not the finite subsets of 2ω.

Theorem. Generics for Kumabe-Slaman forcing preserve admissibility.

Key lemma (Slaman/Jananthan-Simpson). Suppose M is a model of
ZFC, (Φ,F ) is a Kumabe-Slaman condition in M, D is a dense set for
Kumabe-Slaman forcing in M and G is any finite set of reals. Then in
M there is some (Φ′,F ′) ≤ (Φ,F ) meeting D such that (Φ′,F ′) is
compatible with (Φ,F ∪ G ).

The point. If M is a model of ZFC then any Kumabe-Slaman generic is
also a Kumabe-Slaman generic over M, even though M may not
actually contain all Kumabe-Slaman conditions.



How far does this work?



It is not clear how far we can go using these ideas. But here is a
natural guess.

Definition. The least recursively inaccessible is the least ordinal less
than ω1 which is both admissible and a limit of admissibles.

This ordinal is extremely large compared to ωCK
1 .

Notation. Let κ : DT → ω1 denote the function κ(x) = least
recursively inaccessible relative to x .

Fact. Iterating the hyperjump is well-defined below the least recursively
inaccessible.

Natural guess. Fix functions α, β : DT → ω1 such that for all x
• α(x) < κ(x)

• β(x) < ωx
α(x)

and define f (x) = Hα(x)(x)(β(x)).
The collection of such functions is well-ordered by ≤M . It seems
natural to guess that this collection forms an initial segment of ≤M .



The main obstacle to extending our analysis through the first
recursively inaccessible:

Definition. A function α : DT → ω1 is uniformly singular if there are
functions β, {γi}i<ω1 : DT → ω1 all strictly ≤M -below α such that for
all x ,

α(x) = sup
i<β(x)

γi (x).

Example. Define α(x) = ωx
1 · 2. Then α is uniformly singular, as

witnessed by β(x) = ωx
1 and γi (x) = ωx

1 + i .

Fact. The function x 7→ ωx
1 is not uniformly singular.

Question. Suppose α ≤M κ and α(x) is not admissible on a cone. Is α
always uniformly singular?


