Martin's conjecture above the hyperjump

Patrick Lutz

UCLA

Joint work with Benjamin Siskind

Question. What are the "natural" functions on the Turing degrees? Answer. The Turing jump and its transfinite iterates.

constant	identity	Turing	double	 omega	 hyper-
functions	function	jump	jump	 jump	 jump
$x\mapsto c$	$x \mapsto x$	$x\mapsto x'$	$x\mapsto x''$	 $x\mapsto x^{(\omega)}$	 $x\mapsto \mathcal{O}^x$

Goal of this talk. Discuss work on formalizing intuition about natural functions on the Turing degrees using the framework of Martin's conjecture, with a focus on functions above the hyperjump.

Notation. D_T = Turing degrees, Id(x) = identity function on D_T , J(x) = Turing jump, $H(x) = O^x$ = hyperjump

Martin's conjecture

Two examples of "weird" functions on the Turing degrees.

Example 1. For each x, use choice to pick y such that $x <_T y <_T x'$ and set f(x) = y.

Example 2. For each x, define

$$g(x) = \begin{cases} x & \text{if } x \not\geq_T 0' \\ x' & \text{if } x \geq_T 0'. \end{cases}$$

Idea of Martin's conjecture: Rule out such pathological functions by

- Looking at the behavior of functions "in the limit"
- Replacing the Axiom of Choice with the Axiom of Determinacy (AD)

Martin's conjecture, informally. Under AD, every function $f: \mathcal{D}_T \to \mathcal{D}_T$ is either eventually constant, eventually the identity or eventually a transfinite iterate of the Turing jump

Idea of Martin's conjecture: Rule out such pathological functions by

- Look at the behavior of functions "in the limit"
- Replace the Axiom of Choice with the Axiom of Determinacy (AD)

Definition. A cone of Turing degrees is a set of the form $\{x \mid x \ge_T y\}$ Definition. Suppose $f, g: \mathcal{D}_T \to \mathcal{D}_T$.

- $f \equiv_M g$ if $f(x) \equiv_T g(x)$ on a cone
- $f \leq_M g$ if $f(x) \leq_T g(x)$ on a cone.

Martin's conjecture classifies functions on the Turing degrees up to \equiv_M equivalence

Idea of Martin's conjecture: Rule out such pathological functions by

- Look at the behavior of functions "in the limit"
- Replace the Axiom of Choice with the Axiom of Determinacy (AD)

Axiom of Determinacy: Contradicts the Axiom of Choice and consistent relative to large cardinals

Theorem (Martin). Under AD, every set of Turing degrees either contains a cone or is disjoint from a cone.

Definition. A set $A \subseteq D_T$ is cofinal if for all x, there is some $y \ge_T x$ such that $y \in A$.

Theorem, restated. Under AD, if a set of Turing degrees is cofinal then it contains a cone.

Note. There are a number of variations of AD, e.g. AD^+ , $AD_{\mathbb{R}}$, $AD + V = L(\mathbb{R})$. We will conflate these for the purposes of this talk.

Theorem (Martin). Under AD, if a set of Turing degrees is cofinal then it contains a cone.

Example: jump inversion via nuclear flyswatter. For every x on some cone, there is some y such that $y' \equiv_T x$.

Proof. By AD, it is enough to show this is true cofinally. Fix a and we will show it holds above a.

Let x = a'. Then for some y (namely a itself), $y' \equiv_T x$. Since $x \ge_T a$ we are done.

Martin's conjecture. Assuming AD,

- (1) Every function $f: \mathcal{D}_T \to \mathcal{D}_T$ is either constant on a cone or above the identity on a cone (i.e. $f \geq_M Id$).
- (2) The \equiv_M -equivalence classes of functions which are above the identity on a cone are well-ordered by \leq_M and the successor in this well-order is given by the Turing jump (i.e. the successor of f is $J \circ f$).

In a sense, the conjecture implies that every function above the identity is equivalent to a transfinite iterate of the jump, but it does not give us a concrete description of these functions.

Order-preserving functions

Definition. A function $f: \mathcal{D}_T \to \mathcal{D}_T$ is order-preserving if for all x, y

$$x \ge_T y \implies f(x) \ge_T f(y).$$

Theorem (L.-Siskind). Part 1 of Martin's conjecture holds for all order-preserving functions.

Theorem (Slaman-Steel). Part 2 of Martin's conjecture holds for all order-preserving functions $f \leq_M H$.

Actually, Slaman and Steel prove more: an explicit description of all order-preserving functions $f: \mathcal{D}_T \to \mathcal{D}_T$ such that $Id \leq_M f \leq_M H$.

Actually, Slaman and Steel prove more: an explicit description of all order-preserving functions $f: \mathcal{D}_T \to \mathcal{D}_T$ such that $Id \leq_M f \leq_M H$.

Recall. For any $x \in \mathcal{D}_T$, ω_1^x denotes the least ordinal with no presentation computable from x. If $\alpha < \omega_1^x$ then $x^{(\alpha)}$, the α^{th} jump of x, is well-defined and $x^{(\alpha)} <_T H(x)$.

Observation. For any $\alpha < \omega_1$, $J_{\alpha}(x) = x^{(\alpha)}$ is well-defined on a cone and $J_{\alpha} <_M H$.

Theorem (Slaman-Steel). For any order-preserving $f: \mathcal{D}_T \to \mathcal{D}_T$, if $Id \leq_M f \leq_M H$ then either (1) there is some $\alpha < \omega_1$ such that $f \equiv_M J_{\alpha}$ (2) or $f \equiv_M H$.

Question 1. Can Slaman and Steel's results be extended to all order-preserving functions?

Question 2. Is there a concrete description of the functions above the hyperjump?

Functions above the hyperjump

Question. What are the "natural" functions between the hyperjump and the double hyperjump?

Some obvious examples. $H(x), J(H(x)), J_2(H(x)), \ldots, J_{\alpha}(H(x)), \ldots$

Question. Are there any others?

Answer. Yes! For example, define $f(x) = H(x)^{(\omega_1^x)}$. Note that f is well-defined: for any x, $\omega_1^x < \omega_1^{H(x)} = \omega_2^x$.

A more general example. Let $\alpha : \mathcal{D}_T \to \omega_1$ be any function such that for all $x, \alpha(x) < \omega_2^x$. Define $f(x) = H(x)^{(\alpha(x))}$.

f(x) is well-defined and below H(H(x)) on a cone.

A more general example. $f(x) = H(x)^{(\alpha(x))}$ for any function $\alpha: \mathcal{D}_T \to \omega_1$ such that $\alpha(x) < \omega_2^x$.

The class of functions $\mathcal{D}_T \rightarrow \omega_1$ is nicely behaved under AD.

Definition. For any functions $\alpha, \beta \colon \mathcal{D}_T \to \omega_1$, define $\alpha \leq_M \beta$ to mean $\alpha(x) \leq \beta(x)$ on a cone.

Proposition. The collection of functions $\mathcal{D}_T \to \omega_1$ is pre-well-ordered by \leq_M .

Corollary. The collection of functions

$$\{H(x)^{(\alpha(x))} \mid \alpha \colon \mathcal{D}_T \to \omega_1 \text{ and for all } x, \ \alpha(x) < \omega_2^x\}$$

is well-ordered by \leq_M .

Theorem (L.-Siskind). For any order-preserving $f : \mathcal{D}_T \to \mathcal{D}_T$, if $H \leq_M f <_M H \circ H$ then for some function $\alpha : \mathcal{D}_T \to \omega_1$, $f \equiv_M H(x)^{(\alpha(x))}$.

The proof of the Slaman-Steel theorem

Theorem (Slaman-Steel). For any order-preserving $f: \mathcal{D}_T \to \mathcal{D}_T$, if $Id \leq_M f <_M H$ then there is some $\alpha < \omega_1$ such that $f \equiv_M J_{\alpha}$.

Theorem (Posner-Robinson). For any $x >_T 0$, there is some g such that $x \oplus g \ge_T g'$.

If x is not computable, it looks like the jump relative to some g.

Generalized Posner-Robinson Theorem (Jockusch-Shore). Fix x and $\alpha < \omega_1^{CK}$ and suppose that for all $\beta < \alpha$, $0^{(\beta)} <_T x$. Then there is some g such that $x \oplus g \ge_T g^{(\alpha)}$.

If x is strictly above $0^{(\beta)}$ for each $\beta < \alpha$ then x looks like the α -jump relative to some g.

Relativized version. Fix x, y and $\alpha < \omega_1^x$ and suppose that for all $\beta < \alpha$, $x^{(\beta)} <_T y$. Then there is some $g \ge_T x$ such that $y \oplus g \ge_T g^{(\alpha)}$.

Theorem (Slaman-Steel). For any order-preserving $f: \mathcal{D}_T \to \mathcal{D}_T$, if $Id \leq_M f <_M H$ then there is some $\alpha < \omega_1$ such that $f \equiv_M J_{\alpha}$.

Proof. Let α be the least ordinal such that for all x on a cone, f(x) is not strictly above $x^{(\alpha)}$. We will show $f \equiv_M J_{\alpha}$.

Enough to show $f(x) \ge_T x^{(\alpha)}$ cofinally. So fix x and we will show this happens somewhere above x.

For every $\beta < \alpha$, $x^{(\beta)} <_{T} f(x)$. So by the generalized Posner-Robinson theorem, there is some $g \ge_{T} x$ such that $f(x) \oplus g \ge_{T} g^{(\alpha)}$.

Now calculate:

$$\begin{split} f(g) &\geq_T f(x) \oplus f(g) & (f \text{ is order-preserving and } x \leq_T g) \\ &\geq_T f(x) \oplus g & (f \geq_M Id) \\ &\geq_T g^{(\alpha)} & (\text{by choice of } g). \end{split}$$

Theorem (L.-Siskind). For any order-preserving $f: \mathcal{D}_T \to \mathcal{D}_T$, if $H \leq_M f <_M H \circ H$ then for some $\alpha: \mathcal{D}_T \to \omega_1$, $f \equiv_M H(x)^{\alpha(x)}$.

Proof attempt. Let α be the least ordinal such that for all x on a cone, f(x) is not strictly above $x^{(\alpha)} \alpha(x) =$ least ordinal such that f(x) is not strictly above $H(x)^{(\alpha(x))}$. We will show $f \equiv_M J_\alpha f(x) \equiv_M H(x)^{(\alpha(x))}$. Enough to show $f(x) \ge_T x^{(\alpha)} f(x) \ge_T H(x)^{(\alpha(x))}$ cofinally. So fix xand we will show this happens somewhere above x. For every $\beta < \alpha, x^{(\beta)} <_T f(x) \beta < \alpha(x), H(x)^{(\beta)} <_T f(x)$. So by the generalized Posner-Robinson theorem, there is some $g \ge_T x$ such that

 $\frac{f(x) \oplus g \geq_{\mathcal{T}} g^{(\alpha)}}{f(x)} f(x) \oplus g \geq_{\mathcal{T}} H(g)^{(\alpha(x))}.$

Now calculate:

$$\begin{array}{ll} f(g) \geq_{\mathcal{T}} f(x) \oplus f(g) & (f \text{ is order-preserving and } x \leq_{\mathcal{T}} g) \\ \geq_{\mathcal{T}} f(x) \oplus g & (f \geq_{M} Id) \\ \geq_{\mathcal{T}} H(g)^{(\alpha(x))} & (\text{by choice of } g). \end{array}$$

Two problems: first, need an appropriate Posner-Robinson theorem. Second, need $f(g) \ge_{\mathcal{T}} H(g)^{(\alpha(g))}$ not $H(g)^{(\alpha(x))}$.

Fixing the proof

Theorem (L.-Siskind). For any order-preserving $f: \mathcal{D}_T \to \mathcal{D}_T$, if $H \leq_M f <_M H \circ H$ then for some $\alpha: \mathcal{D}_T \to \omega_1$, $f \equiv_M H(x)^{\alpha(x)}$.

Problems.

- (1) Need an appropriate version of the Posner-Robinson theorem.
- (2) Need to know that the real g witnessing the Posner-Robinson theorem preserves α , i.e. $\alpha(g) = \alpha(x)$.

Problem 1. Need an appropriate version of Posner-Robinson theorem.

Solution 1. The necessary version of Posner-Robinson can be proved using Jockusch-Shore + hyperjump inversion.

Theorem. Fix x and $\alpha < \omega_2^{CK}$. Suppose that for all $\beta < \alpha$, $\mathcal{O}^{(\beta)} <_{\mathcal{T}} x$. Then for some $g, x \oplus g \ge_{\mathcal{T}} H(g)^{(\alpha)}$.

Proof. By the generalized Posner-Robinson theorem relative to \mathcal{O} , there is some $h \ge_T \mathcal{O}$ such that $x \oplus h \ge_T h^{(\alpha)}$.

Since $h \ge_T O$, we can apply hyperjump inversion to get g such that

$$H(g) \equiv_T g \oplus \mathcal{O} \equiv_T h.$$

Now calculate

$$\begin{array}{ll} x \oplus g \geq_T x \oplus h & (x \geq_T \mathcal{O} \text{ and } g \oplus \mathcal{O} \geq_T h) \\ \geq_T h^{(\alpha)} & (\text{by choice of } h) \\ \geq_T H(g)^{(\alpha)} & (\text{since } H(g) \equiv_T h). \end{array}$$

Problem 2. Need the real g witnessing Posner-Robinson to preserve $\alpha: \mathcal{D}_T \to \omega_1$.

Solution 2. Classification of functions $\mathcal{D}_T \to \omega_1$ below $x \mapsto \omega_2^x$.

Theorem (Siskind). If $\alpha: \mathcal{D}_T \to \omega_1$ is strictly below $x \mapsto \omega_2^x$ then there is some $\sigma: \omega_1 \to \omega_1$ such that on a cone, $\alpha(x) = \sigma(\omega_1^x)$.

The proof works by comparing the ultrapower by the cone measure on \mathcal{D}_T to the iterated ultrapower by the club filter.

Upshot. It is enough to show that g preserves ω_1^{CK} .

But this follows from our proof of the existence of g.

Recall that g was found by applying hyperjump inversion to some $h \ge_T \mathcal{O}$. And it is well-known that

$$H(g) \equiv_T g \oplus \mathcal{O} \implies \omega_1^g = \omega_1^{CK}.$$

Past the double hyperjump

These ideas work well past the double hyperjump.

In particular: there is some long initial segment of the \leq_M order where every function has the form $x \mapsto H^{\alpha(x)}(x)^{(\beta(x))}$ for some functions $\alpha, \beta \colon \mathcal{D}_T \to \omega_1$.

The three ingredients.

- (1) An appropriate version of the Posner-Robinson theorem
- (2) A classification of functions $\mathcal{D}_T \to \omega_1$
- (3) A proof that the real witnessing the Posner-Robinson theorem preserves appropriate ordinal-valued functions.

Ingredient 1 follows relatively easily from known proofs of the Posner-Robinson theorem for the hyperjump (due to Slaman and written up by Jananthan and Simpson)

Ingredient 2: classification of functions $\mathcal{D}_T \rightarrow \omega_1$

Notation. For any $\alpha \colon \mathcal{D}_T \to \omega_1$, let $|\alpha|$ denote the rank of α in the \leq_M well-order.

Technical definition. Let C be the set of uniform indiscernibles, i.e. ordinals α such that for all $x \in 2^{\omega}$, α is a Silver indiscernible for L[x].

Theorem (Siskind). For every function $\alpha : \mathcal{D}_T \to \omega_1$, there is some $\sigma : \omega_1^n \to \omega_1$ and functions $\beta_1, \ldots, \beta_n : \mathcal{D}_T \to \omega_1$ such that

$$\alpha(x) = \sigma(\beta_1(x), \ldots, \beta_n(x))$$

and for each i, $|\beta_i| \in C$.

Upshot. When proving instances of Martin's conjecture for order-preserving functions using the strategy explained earlier, it suffices to preserve ordinal valued functions whose ranks are in C.

Ingredient 3: Preserving ordinal valued functions.

Definition. An ordinal $\alpha < \omega_1$ is admissible if for some x, $\alpha = \omega_1^x$ and admissible relative to x if for some $y \ge_T x$, $\alpha = \omega_1^y$.

Theorem (Steel). For some long initial segment of \leq_M , if $\alpha \colon \mathcal{D}_T \to \omega_1$ has rank in C then for all x on a cone, $\alpha(x)$ is either admissible relative to x or the limit of ordinals which are admissible relative to x.

Thus it makes sense to focus on proving that the Posner-Robinson theorem has witnesses which preserve admissibility.

Preserving admissibility

In many cases, it is possible to prove versions of the Posner-Robinson theorem while preserving admissibility of many ordinals.

Kumabe-Slaman forcing. Conditions consist of a finite set $\Phi \subseteq \omega$ and a finite set $F \subseteq 2^{\omega}$.

Key point. The generic is formed using only the finite subsets of ω and not the finite subsets of 2^{ω} .

Theorem. Generics for Kumabe-Slaman forcing preserve admissibility.

Key lemma (Slaman/Jananthan-Simpson). Suppose M is a model of ZFC, (Φ, F) is a Kumabe-Slaman condition in M, D is a dense set for Kumabe-Slaman forcing in M and G is any finite set of reals. Then in M there is some $(\Phi', F') \leq (\Phi, F)$ meeting D such that (Φ', F') is compatible with $(\Phi, F \cup G)$.

The point. If M is a model of ZFC then any Kumabe-Slaman generic is also a Kumabe-Slaman generic over M, even though M may not actually contain all Kumabe-Slaman conditions.

How far does this work?

It is not clear how far we can go using these ideas. But here is a natural guess.

Definition. The least recursively inaccessible is the least ordinal less than ω_1 which is both admissible and a limit of admissibles.

This ordinal is extremely large compared to ω_1^{CK} .

Notation. Let $\kappa: \mathcal{D}_T \to \omega_1$ denote the function $\kappa(x) = \text{least}$ recursively inaccessible relative to x.

Fact. Iterating the hyperjump is well-defined below the least recursively inaccessible.

Natural guess. Fix functions $\alpha, \beta \colon \mathcal{D}_T \to \omega_1$ such that for all x

- $\alpha(x) < \kappa(x)$
- $\beta(x) < \omega_{\alpha(x)}^{x}$

and define $f(x) = H^{\alpha(x)}(x)^{(\beta(x))}$.

The collection of such functions is well-ordered by \leq_M . It seems natural to guess that this collection forms an initial segment of \leq_M .

The main obstacle to extending our analysis through the first recursively inaccessible:

Definition. A function $\alpha: \mathcal{D}_T \to \omega_1$ is uniformly singular if there are functions $\beta, \{\gamma_i\}_{i < \omega_1}: \mathcal{D}_T \to \omega_1$ all strictly \leq_M -below α such that for all x,

$$\alpha(x) = \sup_{i < \beta(x)} \gamma_i(x).$$

Example. Define $\alpha(x) = \omega_1^x \cdot 2$. Then α is uniformly singular, as witnessed by $\beta(x) = \omega_1^x$ and $\gamma_i(x) = \omega_1^x + i$.

Fact. The function $x \mapsto \omega_1^x$ is not uniformly singular.

Question. Suppose $\alpha \leq_M \kappa$ and $\alpha(x)$ is not admissible on a cone. Is α always uniformly singular?