

① Countable Borel equivalence relations (CBER)

X Y standard Borel [↓] spaces E, ^F equivalence relations on X, ^Y E is a CBER EE ^X * ^X is Borel Bowel All equivalence classes countable reducible & ^F 7f: ^x -> ^X Bonel sit. ^x Ey => f(x)F f(y) Examples ① Ax ⁼ equality on ^X x-y#x ⁼ y ② AN ^B any CBER with countably many classes ^③ Fo ⁼ eventual equality on 2 frg> 5NnIN f(n) ⁼ g(n)

1) Picture of CBERS

\n- Question. More dichotomy theorems?
\n- E
$$
\frac{36}{11}
$$
 Eo sh. $\frac{1}{\sqrt{7}}$ (F $\frac{66}{11}$ Eo or E $\frac{66}{11}$)
\n- Thm. (Conlag-Miller). No countable base for non-measure-hyperfinite CBERs under $\frac{6}{11}$
\n- Le. for any (Fa) new-megative-hyperfinite, $\frac{36}{11}$ Es. $\frac{36}{11}$ Fo all n, $\frac{4}{11}$ E\n
\n- No dichotomy than 160
\n- The point. Any Further dichotomy 160
\n- The point. Any Further dichotomy 160
\n- Cuesthon. Successor of Eo?
\n- Questhon. Subably, yes.
\n

 (2.2) Successors of E_0

Question Successor of Eo? Successor of Eo?
E M Eo s.t. F S_M E => F SM Eo?

Ihm (Conley-Miller) Suppose λ is a measure s.t. O E is not λ -1 er) Si
Didy
Calla)
Disnoci $\begin{array}{lll} \n\text{F} & \text{F}_0? & \text{F}_\text{A} & \text{F}_\text{B} & \text{F}_\text{B$ $\frac{1}{\sqrt{2}}$ E is not λ -hyperfinite > 3A u(A)=1
 $\frac{1}{\sqrt{2}}$ For all $\frac{1}{\sqrt{2}}$ E is u-hyperfinite $\lambda(A) = 0$ O For all $\mu \perp \lambda$) E is u-hyperfinite
Then E is a successor of Eo for En

This talk (me ⁺ Jan Grebik) : O A combinatorial conditions that implies Conley & Miller's
condition Slossless expansion

^② Two plausible candidates for this combinatorial condition

3 Lossless expansion
\n
$$
G = (V, E)
$$
 finite d-regular graph
\nA
\n $A = V$
\n $A = V$
\n $2A$ {e | one endpoint of e in A) one in V-A}
\n $2A$
\n $2A = (Me$ endpoint of e in A) one in V-A}
\n $2A$
\n<

(Informal) DeP0 Lossless expander if very small subsets of ^C have almost optimal expansion - average degree & 2+ ^E Question Why 2 ⁺ ⁵ ? Why not I ⁺ & ? a⁰⁰⁰ p% average degree Answer . of A : 2 - & (Nonstandard) Def ^A family of d-regular graphs Go, G, , ... is a lossless expanding family if for all E30 there is 8>0 and ^N ^S .t. u= N, AEvCG(- average deg of A 2E

(Non-standard)		
Def	A family of a regular graphs	Go, G ₁₁ ... is a lossless expanding family if for all $\epsilon > 0$ there is \$3 > 0
and N s.t.	$n \ge N$, $A \subseteq V(G_n)$, \Rightarrow average deg. of $A \le 2+\epsilon$	
1A \le \$ V(G_n)	average deg. of $A \le 2+\epsilon$	
Example	$G_n =$ random d-regular graph on n vertices	
$\omega h.p. G_0, G_1, \ldots$ is a lossless expander		
Recently: Lossless expanders used to consider good quantum error-correcting codes		

$$
\bigoplus \text{Lossless expansion in Borel graphs}
$$
\n
\n6. d-regular Borel graph on X
\n
$$
\lambda \text{ Berel probability measure on X}
$$
\n
$$
\text{deg}_{A}(x) = | \{ y \in A | (x, y) \in E(G) \} |
$$
\n
$$
\text{deg}_{A}(x) = | \{ y \in A | (x, y) \in E(G) \} |
$$
\n
$$
\text{log}^{2} \text{deg}_{A}(A) = \int_{A} \text{deg}_{A}(x) dx
$$
\n
$$
\text{log}^{2} \text{log}_{A}(A) = \int_{A} \text{deg}_{A}(x) dx
$$
\n
$$
\text{log}^{2} \text{log}_{A}(A) = \int_{A} \text{log}_{A}(x) dx
$$
\n
$$
\text{log}^{2} \text{log}_{A}(A) = \int_{A} \text{log}_{A}(x) dx
$$
\n
$$
\text{log}^{2} \text{log}_{A}(A) = \frac{1}{2} \int_{A} \text{log}_{A}(A) dx
$$
\n
$$
\text{log}^{2} \text{log}_{A}(A) = 2 + \sum_{x \in A} \lambda(x) (A) = 2 + \sum_{x \in A} \lambda(x) (A) = 2 - 1 - \sum_{x \in A} \lambda(A)
$$
\n
$$
\text{log}^{2} \text{log}_{A}(A) = 3
$$
\n
$$
\text{log}_{A}(A) = 3
$$
\n
$$
\text{log}_{A}(A
$$

4.) Lossless expansion and successors of Eq.

\n7. Finally-generated non-amenable group acting freely on X G. Schreier graph of
$$
\Gamma
$$
 α X

\n6. Schreier graph of Γ α X

\n7. \exists invarianit probability measure on X s.t. \exists upp(λ) = X

\n6. \forall or half equal to the graph of Γ α X

\n7. \exists invarianit prebabilify measure on X s.t. \exists upp(λ) = X

\n7. \forall or half on A Γ α X

\n7. \forall is a success of \forall and \forall is a success of \forall and \forall is a success of \forall and \forall is a λ -lossless exponent, and \forall is a λ -hyperfinite

\n7. \forall is a λ -lossless exponent, and \forall is a λ -hyperfinite

\n8. \forall is a λ -hyperfinite

\n9. \forall is the same as \forall is the same as <

Proving hyperfiniteness Two useful ideas when proving m-hyperfiniteness ^① Def An undirected Borel graph ^G is orientable if its edges can be directed such that each vertex has zages can be airecred s
out degree at most 1 degree at most 1 ndirected Borel
an be directed
egree at most $\overline{}$ can be directed such the
degree at most 1
1. - $\frac{1}{2}$ os G is
C is
that
C is & &o Bowel
Thm (Dougherty-Jackson-Kechris) If G is orientable then the associated equivalence relation is hypertonite Thm (Dougherty-Jackson-Kechris) If G is orientable to
the associated equivalence relation is hyperfinite
(2) To show E is u-hyperfinite, it is Enough to show
that for all E>O there is A s.t. MAY > I-E U
To show E is u-hyperforme, it is enough to
that for all E>0 there is A s.t. u(A) > 1e and E_{1A} is hyperfinite (Because table if its
pertex has
entable the
period show
if the show
if the show
if the show
if the show
if the show
if the show 3 Essentially Dye-Krieger assume u quasi-invariant)

(t.3) Proof sketch

Thm (Grebik-L.) If [↑] acts by isometries and ^C is ^a n (Grebik-L.) If I acts by isometries and G is a
).-lossless expander then E is a successor of Eo for SM Fix $\mu \perp \lambda$, $\epsilon > 0$ $God: Find ASX st. QM(A) > 1-\epsilon$ ② GIA Bore orientable Iterative process : On each step , delete a small number of vertices & orent some edges To ensure $\mu(A) \ge 1 - E$: On each step, many more rative process: On each step, delete a small number of vertices & orient some edges

Iterative process: On each step, delete a small number

Each step:

Iteratively orient degree 1 vertices Phase 1

⑤ Candidates

Thm (Grebik-L.) If [↑] acts by isometries and ^C is ^a n (Grebik-L.) If I acts by isometries and G is a
).-lossless expander then E is a successor of Eo for SM Question Does this ever actually happen? Two candidates : ① Random rotations of 52 ② Limit of sequence of finite graphs

(S.1) Random rotations of S^2

Pick two rotations $\gamma_{0}/\gamma_{1} \in SO(3)$ $\Gamma = \langle \chi_0, \chi_1 \rangle$ $x = S²$ abons $y_0, y_1 \in SO(3)$
 x_1 x = Lebesgue measure G
Fact If we pick two rotations of S^2 at random then I It we pick two reternons of s at random then
with probability 1, they generate a 4ree subgroup of 50(3) Bourgain-Gamburd: Many examples of 2 rotations which
generate expander graphs 7 but not necessarily lossless expanders

1dea	15	16	16	16
1de: F_2 acts on G_0				
1e: F_2 acts on G_0				
1f: G_2				
1g: G_1				
1g: G_1				
1h: G_1				
1h: G_1				
1h: G_1				
12g: G_1				
12g: G_1				
13g: G_1				
15g: G_1				
16g: F_2 acts on G_1 G_1				
17g: G_1				
18g: G_1				
19g: $\lambda =$ h h h				
10h: F_2 acts on G_1 G_1				
112g: G_1				
12g: G_1				
13g: G_1				
14g: G_1				
15g: G_1				
16g: G_1				
17g: G_1				
18g: G_1				
19g: $\lambda =$ h h h				