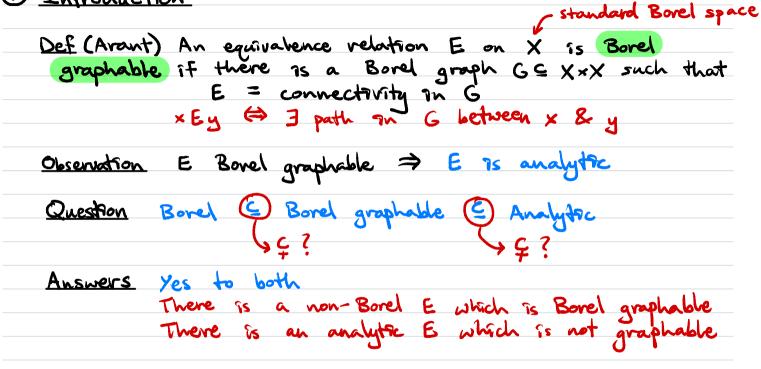
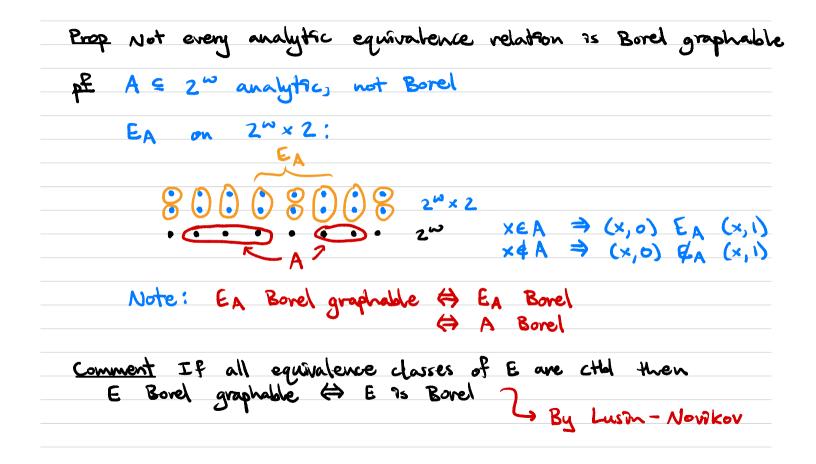


1 Introduction





Prop There is a universal analytic equivalence which is
Borel graphable

$$pf$$
 Pick E on 2¹⁰ universal analytic
Define E' on 2¹⁰ \times 2²⁰ by
(xo, yo) E' (xi, yi) \Leftrightarrow xo E x,
 O E' still universal
 (x_{0}, y_{0}) E' (xi, yi) \Leftrightarrow xo E x,
 O E' still universal
 (x_{0}, y_{0}) E' (xi, yi) \Leftrightarrow xo E x,
 (x_{0}, y_{0}) E' (xi, yi) \Leftrightarrow xo E x,
 (x_{0}, y_{0}) E' (xi, yi) \Leftrightarrow xo E x,
 (x_{0}, y_{0}) E' (xi, yi) \Leftrightarrow that xo E x,
 (x_{0}, y_{0}) E' (xi, yi) \mapsto that xo E x,
 (x_{0}, y_{0}) E' (xi, yi) het yz computes a witness
that xo E x,
Then (xo, yo) - (xo, yz) - (xi, yi) is a path in G

Them (Arant)
$$F_{w_1}$$
 is not Δ'_i - graphable
pt Suppose for contradiction G is a Δ'_i -graphing of F_{w_1}
Chaim Every elt of connected component of O is Δ'_i
pt By induction
Suppose x is Δ'_i , need to prove all neighbors are Δ'_i
 $N(x) = \{ y \in 2^{w} \mid (x, y) \in G \}$ is $\Delta'_i(x) = \Delta'_i$
Eff. perfect set then $\Rightarrow N(x) \in \Delta'_i$ or uncital
Case 1: $N(x) \leq \Delta'_i$. We are done
Case 2: $N(x)$ uncital. Friedman's conj. \Rightarrow $\exists y \in N(x) \; \omega_i^{x} < \omega_i^{y}$
By claim, $[O]_{F_{w_1}} = connected component of O in $G \subseteq \Delta'_i$
But it is known $[O]_{F_{w_1}} \notin \Delta'_i \rightarrow \leftarrow$$

Consequence: Assuming V=L, Fw, is not Borel graphable

Assume: There is a
$$\in 2^{\omega}$$
 st. a $\notin L$ and $\omega_{i}^{L} = \omega_{i}$
Goal: Show F_w, is Borel graphable
The graph: Set x and y adjacent if $\times @y@a$
computes a witness that $\omega_{i}^{x} = \omega_{i}^{y}$ $\longrightarrow \Delta_{i}^{x}(a)$
Enough to show: Given x, y $\in 2^{\omega}$ with $\omega_{i}^{x} = \omega_{i}^{y}$,
we can find z s.t.
 $(1) \omega_{i}^{z} = \omega_{i}^{x}$
 $(2) a @ 2 computes enough information $\longrightarrow O^{x}, O^{y}, O^{z}$
is enough
Perfect tool to build z : Kumabe-Slaman forcing$

$$\begin{bmatrix} Connected Polish group \\ \Gamma(X) Polish group action w/ all orbits size $\ge 2 \\ \hline Coal: Show E_{\Gamma}^{\times} has Borel ceeding property \\ \hline p^{2} sketch Fix {xisien ethl dense set in X} \\ \hline d(-, -) Polish metric on X \\ \hline Define F(x) = \bigoplus_{i \in N} d(x, x_{i}) \\ \hline Coiven x \in X and a \in 2^{\omega} \\ \hline Pick z \neq x in same orbit as x \\ and x_{i} sit d(x, x_{i}) \neq d(z, x_{i}) \\ \hline Consider \Gamma \rightarrow R_{>0} \\ \hline p = d(g^{*}x, x_{i}) continuous \\ \hline p = d(g^{*}x, x_{i}) continuous \\ \hline Pick e \in [d(x, x_{i}), d(z, x_{i})] st e computes a \\ g \in \Gamma st d(g^{*}x, x_{i}) = e, Set y = g^{*}x. \Rightarrow F(y) \ge r a \\ \hline e = f(y) \ge f(y) \ge r \\ \hline e = f(y) \ge f(y) \ge r \\ \hline e = f(y) \ge f(y) \ge f(y) \ge f(y) \\ \hline e = f(y) \ge f(y) \ge f($$$