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TL;DR

Martin’s conjecture: classifies the “in the limit”
behavior of definable functions on the Turing
degrees.

Our result: We identify a new natural class of
functions on the Turing degrees and prove part of
Martin’s conjecture for this class.

This also allows us to extend some old results on
Martin’s conjecture.



Possible functions on the Turing degrees

What functions on the Turing degrees can you think
of?

Smart-aleck answer: Constant functions and the
identity

An old favorite: The Turing jump

More: double jump, triple jump, . . ., hyperjump,
. . ., sharps, . . .

Is that everything?



Possible functions on the Turing degrees

Functions on the Turing degrees: constant
functions, identity, iterates of the jump

Is that everything? No!

Theorem (Kleene-Post): ∃y (0 <T y <T 0′)

Relativized version: ∀x ∃y (x <T y <T x ′)

Example: For every x , use choice to pick a y such
that x <T y <T x ′

Did we really need the axiom of choice?



Possible functions on the Turing degrees

Example 1: For every x , use choice to pick a y such
that x <T y <T x ′

Did we really need the axiom of choice? No!

Example 2: Fix a Turing degree z and define

f (x) =

{
0 if x �T z

x ′ if x ≥T z .

But this example is pretty lame



Martin’s conjecture, informally

Idea of Martin’s conjecture: Exclude these types
of examples

• Look at the behavior of functions “in the limit”

• Replace the axiom of choice with the axiom of
determinacy (AD)

Martin’s conjecture, super informal version:
Under AD, every function on the Turing degrees is
either eventually constant, eventually the identity or
eventually a transfinite iterate of the Turing jump



What does “in the limit” mean?

Definition: A cone of Turing degrees is a set of the
form {x | x ≥T y} (“the cone above y”)

If f and g are functions on the Turing degrees:

Definition: f ≡M g if f (x) ≡T g(x) on a cone

Definition: f ≤M g if f (x) ≤T g(x) on a cone

“f is constant on a cone” = f is equivalent to a
constant function

“f is above the identity on a cone” = f ≥M id



What does “in the limit” mean?

The measure theory perspective

If A is a set of Turing degrees:

A has measure 1 if A contains a cone

A has measure 0 if A is disjoint from a cone

This forms a {0, 1}-valued measure on the Turing
degrees, called “Martin measure”

f ≡M g = “f (x) ≡T g(x) for almost every x”

f ≤M g = “f (x) ≤T g(x) for almost every x”



The axiom of determinacy

Martin’s conjecture replaces the axiom of choice
with the axiom of determinacy. Why?

Philosophical reason 1: Proving Martin’s
conjecture under AD means that ZF cannot prove
the existence of weird counterexamples

Philosophical reason 2: Limited forms of
determinacy are provable for most reasonable
classes of “definable functions”

Practical reason: AD helps prove structural
theorems, plays well with Martin measure



How to use determinacy in computability theory

Assuming the axiom of determinacy:

Fact: Every set of Turing degrees either contains a
cone or is disjoint from a cone

Fact, restated: The Martin measure is an ultrafilter

Fact, restated again: If a set of Turing degrees is
cofinal (for all x , there is some y ≥T x in the set)
then it contains a cone

The first principle of using determinacy in
computability: Describe what you want, show it
holds cofinally, and let determinacy do the rest



How to use determinacy in computability theory

Example: Jump inversion via nuclear flyswatter

Theorem (jump inversion): Every large enough
Turing degree is the jump of something

Formal version: There is some z such that for every
x ≥T z there is some y such that y ′ ≡T x .

Proof: Let A = {x | ∃y (y ′ ≡T x)}. This set is
cofinal because for each x , x ′ is above x and is in A.
So by determinacy, A contains a cone.

This is a little silly because the Friedberg jump
inversion theorem already says that this holds on
the cone above 0’



Formal statement of Martin’s conjecture

Martin’s conjecture: Assuming the axiom of
determinacy

(1) Every function on the Turing degrees is either
constant on a cone or above the identity on a
cone

(2) The (equivalence classes of) functions which are
above the identity on a cone are well-ordered by
≤M and the successor in this well-order is given
by the Turing jump

Disclaimer: Martin’s conjecture is usually stated in terms of
Turing-invariant functions on 2ω. Assuming ADR, these two
definitions are equivalent.



Results on Martin’s conjecture

Some special cases of Martin’s conjecture are known

Definition: A function f on the Turing degrees is
order preserving if for all x and y ,

x ≥T y =⇒ f (x) ≥T f (y)

Definition: A function f on the Turing degrees is
measure preserving if for all x there is y such that

z ≥T y =⇒ f (z) ≥T x

measure preserving = “goes to infinity in the limit”



Results on Martin’s conjecture

Some special cases of Martin’s conjecture are known

Theorem (Slaman and Steel): Part 1 holds for
functions which are below the identity on a cone

Theorem (Slaman and Steel): Part 2 holds for
order-preserving Borel functions

Theorem (L. and Siskind): Part 1 holds for measure
preserving functions*

Theorem (L. and Siskind): Part 1 holds for order
preserving functions (rules out “sideways” functions)

*Requires either ADR or AD+



Measure preserving functions

Part 1 of Martin’s conjecture holds for measure
preserving functions. Why should I care?

Measure preserving functions are natural:

They are exactly the functions which are above
every constant function in the Martin order

They are exactly the functions which preserve
Martin measure in the sense of ergodic theory

Corollary: Part 1 of Martin’s conjecture is equivalent
to a statement about the Rudin-Keisler order



Measure preserving functions

Part 1 of Martin’s conjecture holds for measure
preserving functions. Why should I care?

Yields other results about Martin’s conjecture:

Order preserving functions are either constant on a
cone or measure preserving

Corollary 1: Part 1 of Martin’s conjecture holds for
order preserving functions

Corollary 2: The Turing degrees are not a universal
locally countable Borel partial order

If f and g are above the identity and for all x and y ,
f (x) ≡T f (y) implies g(x) ≡T g(y) then f ≤M g



Picture of functions on the Turing degrees

Constant 
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Some measure theory background

If µ is a measure on X and f : X → Y is a function

Definition: The pushforward of µ by f is the
measure given by f∗µ(A) = µ(f −1(A))

Definition: f is measure preserving if X = Y and
f∗µ = µ

If µ and ν are ultrafilters on X

Definition (Rudin-Keisler order): µ ≤RK ν if there is
some f : X → X such that f∗ν = µ

Principal ultrafilters are ≤RK -minimal. If X is an
ordinal then the normal ultrafilters are ≤RK -minimal
above the principal ultrafilters



Martin’s conjecture and the Rudin-Keisler order

Fact: A function f on the Turing degrees is measure
preserving if and only if

f∗(Martin measure) = Martin measure

Corollary: Part 1 of Martin’s conjecture holds iff for
all nonprincipal ultrafilters µ on the Turing degrees

• µ is not strictly below Martin measure in the
Rudin-Keisler order
• and if µ is Rudin-Keisler equivalent to Martin

measure then µ is Martin measure

Question: Show that no nonprincipal ultrafilter on
the Turing degrees is strictly below Martin measure



Order preserving =⇒ measure preserving

Theorem (L. and Siskind): If f is an order preserving
function on the Turing degrees then either f is
constant on a cone or f is measure preserving

Idea of the theorem: Think of f as a function on
2ω and use a dichotomy theorem implied by AD

Dichotomy: AD implies that either range(f ) is
countable or contains a perfect set

Countable =⇒ constant on a cone

Contains perfect set =⇒ measure preserving



Order preserving =⇒ measure preserving

Contains perfect set =⇒ measure preserving

Main idea: Use a basis theorem for perfect sets

Theorem (L.): If A ⊆ 2ω is a perfect set, B is a
countable dense subset of A and x computes every
element of B then for any y there are z0, z1, z2, z3 in
A such that x ⊕ z0 ⊕ z1 ⊕ z2 ⊕ z3 ≥T y

Strengthens a theorem of Groszek and Slaman

Useful property of range(f ): Every countable
subset has an upper bound



An interesting consequence of our result

Theorem (Siskind): Suppose f and g are functions
on the Turing degrees which are above the identity
on a cone and which satisfy the following condition

∀x , y (f (x) ≡T f (y) =⇒ g(x) ≡T g(y)) (∗)

then f is below g on a cone

What’s the point? Recall that part 2 of Martin’s
conjecture claims that ≤M is a well-order on
functions above the identity. This result indicates it
could at least be a total order



An interesting consequence of our result: proof

Proof (sketch): Define h as follows: start with x and
find some y such that f (y) = x . Set h(x) = g(y).
By (∗) it doesn’t matter which y is chosen

x



An interesting consequence of our result: proof

Proof (sketch): Define h as follows: start with x and
find some y such that f (y) = x . Set h(x) = g(y).
By (∗) it doesn’t matter which y is chosen

x

y



An interesting consequence of our result: proof

Proof (sketch): Define h as follows: start with x and
find some y such that f (y) = x . Set h(x) = g(y).
By (∗) it doesn’t matter which y is chosen

x

y

f



An interesting consequence of our result: proof

Proof (sketch): Define h as follows: start with x and
find some y such that f (y) = x . Set h(x) = g(y).
By (∗) it doesn’t matter which y is chosen

x

y

f

g



An interesting consequence of our result: proof

Proof (sketch): Define h as follows: start with x and
find some y such that f (y) = x . Set h(x) = g(y).
By (∗) it doesn’t matter which y is chosen

x

y

f

h

g



An interesting consequence of our result: proof
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An interesting consequence of our result: proof
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An interesting consequence of our result: proof

Proof (sketch): Define h as follows: start with x and
find some y such that f (y) = x . Set h(x) = g(y).
By (∗) it doesn’t matter which y is chosen
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An interesting consequence of our result: proof

Proof (sketch): Define h as follows: start with x and
find some y such that f (y) = x . Set h(x) = g(y).
By (∗) it doesn’t matter which y is chosen

Key point: can show that h is measure-preserving
and h ◦ f = g

Since h is above the identity on a cone, g is above f
on a cone. Intuitively h = g − f and h is “positive”



Martin’s conjecture for measure preserving functions

Theorem (L. and Siskind): Part 1 of Martin’s
conjecture holds for measure preserving functions

Theorem, restated: Every measure preserving
function is above the identity on a cone

How does the proof work?



Overview of the proof

(1) General framework is a basic topological fact
about continuous, injective functions

(2) To apply this in our case, study the structure of
measure-preserving functions under determinacy

(3) In more detail: use determinacy to get certain
auxiliary functions associated to a measure
preserving function (basically a Skolem function
witnessing that it is measure preserving, and the
inverse of this Skolem function)



A basic fact of topology

A basic theorem in topology: If F : X → X is a
continuous, injective function on a compact,
Hausdorff topological space X then F has
continuous inverse range(F )→ X .

Computability theory version: If F : 2ω → 2ω is a
computable injective function then for all x , F (x)
can compute x .

Key idea: To show a function f is above the
identity, it is enough to find a computable, injective
function which is below f .



Examining the definition of measure preserving

Definition: A function f on the Turing degrees is
measure preserving if

∀x ∃y (∀z (z ≥T y =⇒ f (z) ≥T x))

This definition naturally suggests looking at a
Skolem function which witnesses that f is measure
preserving

“f is going to infinity in the limit, but how fast?”



Modulus of a measure preserving function

Definition: If f is a measure preserving function, a
modulus for f is a function g such that for all x ,

z ≥T g(x) =⇒ f (z) ≥T x

Call g an increasing modulus for f if g(x) ≥T x

It may seem obvious that every measure-preserving
functions has a modulus. But you are probably
using the axiom of choice

However, it is also true under determinacy! (By a
uniformization theorem)
Disclaimer: needs ADR or AD+



How to use the modulus

Remember: We are trying to find a computable
injective function which f computes. Here’s how we
find it.

Fix an increasing modulus g for f . We get the
function we want by using determinacy to invert g
(like in the jump inversion via nuclear flyswatter
example)



How to use the modulus

Fix an increasing modulus g for f . We get the
function we want by using determinacy to invert g

Explanation: Suppose h : range(g)→ 2ω is an
inverse for g—i.e. g(h(x)) = x .

• h is injective: if h(x) = h(y) then

x = g(h(x)) = g(h(y)) = y

• h is computable: h(x) ≤T g(h(x)) = x because
g is increasing

• f is above h: x ≥T g(h(x)) so f (x) ≥T h(x)



How to use the modulus

Fix an increasing modulus g for f . We get the
function we want by using determinacy to invert g

x
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How to use the modulus

Fix an increasing modulus g for f . We get the
function we want by using determinacy to invert g

x

h(x)

h g

   = g(h(x))

f
f(x)

≤ T



How is this possible??

This function h seems like exactly the kind of thing
that’s supposed to be ruled out by Martin’s
conjecture! It’s decreasing and injective (so it’s not
constant on any cone). Why is this possible?

Answer: h is actually a function on 2ω and there is
no guarantee it is Turing invariant (i.e. even if
x ≡T y we may have h(x) 6≡T h(y)) so it does not
induce a function on Turing degrees.

This is a key point in our proof: you can study a
Turing invariant function by relating it to a non-
Turing invariant function you get with determinacy



Speculations

Question 1: Are there more uses of measure
preserving functions?

The concept of a measure preserving function on
the Turing degrees seems very natural and helped us
discover our current proof of part 1 of Martin’s
conjecture for order preserving functions

Benny’s proof is another example of a use of
measure preserving functions in studying Martin’s
conjecture. Are there more uses?



Speculations

Question 2: Can thinking about the Rudin-Keisler
order on ultrafilters on the Turing degrees help solve
part 1 of Martin’s conjecture?

The Rudin-Keisler order on ordinals and facts about
which nonprincipal ultrafilters are minimal in it play
a role in set theory. Is there a similar theory here?

The statement about the Rudin-Keisler order offers
a novel way to decompose part 1 of Martin’s
conjecture into two smaller parts. Could proving one
or both of these parts individually be more tractable
than proving part 1 of Martin’s conjecture?



Speculations

Question 3: Are there more uses for combining
basis theorems for perfect sets with the basic
topological fact I mentioned earlier?

I also used these two ingredients to prove the
regressive case of the hyperarithmetic version of
Martin’s conjecture and to prove a statement about
the arithmetic version of Martin’s conjecture. Are
there more uses?



Speculations

Question 4: Does changing perspective to the
ultrapower by the Martin measure give any
additional insight?

This one requires a little more explanation...



The view from the ultrapower

Under AD, Martin measure is an ultrafilter, so we
can take ultrapowers by it

For instance, we can take the ultrapower of the
partial order of Turing degrees itself

A representative of an element of this ultrapower is
just a function from the Turing degrees to the
Turing degrees. The ordering on these functions
induced by the ultrapower is just the Martin
ordering. And the equivalence relation induced by
the ultrapower is Martin equivalence. The picture of
the Martin order from earlier is also a picture of this
ultrapower.



The view from the ultrapower

A measure preserving function f on the Turing
degrees has a dual life

On the one hand, it is a representative of the
ultrapower of the Turing degrees by the Martin
measure

On the other hand, it induces a map from this
ultrapower to itself as follows

[g ] 7→ [g ◦ f ]

We found it helpful to study a similar map on the
ultrapower of the ordinals by Martin measure



The view from the ultrapower

There are some hints that studying ultrapowers by
the Martin measure could be helpful

This ultrapower, along with a related structure
called the “generic ultrapower,” have been used in
other parts of set theory where the axiom of
determinacy plays a role. Could techniques from
those areas be helpful in studying Martin’s
conjecture?

Is this related to our observations about Martin’s
conjecture and the Rudin-Keisler order on
ultrafilters on the Turing degrees?


