Encoding information into dense sets

Patrick Lutz

UCLA

Joint work with Matthew Harrison-Trainor

Problem. Given a set X, find an infinite set $A \subseteq \mathbb{N}$ such that all infinite subsets of A compute X.

Classic solution. Think of A as a subset of $2^{<\omega}$ and let A be the set of initial segments of X

As a subset of \mathbb{N} , *A* is sparse.

Number of elements of A less than $n \approx \log(n)$

Question. Given a set X is there always a dense set $A \subseteq \mathbb{N}$ such that all infinite subsets of A compute X?

Question. Given a set X is there always a dense set $A \subseteq \mathbb{N}$ such that all infinite subsets of A compute X?

To answer this question, we need to decide what "dense" means. Definition. Given a set $A \subseteq \mathbb{N}$,

lower density of
$$A = \underline{\rho}(A) = \liminf_{n \to \infty} \frac{|A \cap [n]|}{n+1}$$

upper density of $A = \overline{\rho}(A) = \limsup_{n \to \infty} \frac{|A \cap [n]|}{n+1}$

For any uncomputable X,

Theorem (Harrison-Trainor and L.). For any set $A \subseteq \mathbb{N}$ of positive lower density, A has an infinite subset which does not compute X. Theorem (anyone in this room). There is a set A of positive upper density such that every infinite subset of A computes X.

Theorem (anyone in this room). For any X, there is a set A of positive upper density such that every infinite subset of A computes X. Proof.

X = 10110100...

Theorem (Harrison-Trainor and L.). For any uncomputable X and set $A \subseteq \mathbb{N}$ of positive lower density, A has an infinite subset which does not compute X.

Key ingredients:

- (1) Mathias forcing
- (2) Seetapun's theorem¹. For every uncomputable set X and set A ⊆ N, there is an infinite subset of either A or A which does not compute X.

¹First explicitly proved by Dhzafarov and Jockusch and sometimes called "strong cone avoidance for RT_2^1 ."

Mathias forcing

End result of Mathias forcing: An infinite set $G \subseteq \mathbb{N}$

Conditions. Pairs (F, I) such that

- F is a finite subset of \mathbb{N} , called the stem of the condition
- I is an infinite subset of \mathbb{N} , called the reservoir of the condition

 $\odot \bullet \odot \bullet \bullet \bullet \odot \odot \bullet (\overline{\circ}) \bullet (\overline{\circ}) \bullet \bullet (\overline{\circ}) (\overline{\circ}) (\overline{\circ}) \bullet (\overline{\circ}) (\overline{\circ}) \bullet \cdots$

A condition (F, I) is a partial specification of G: elements of F have already been put into G and elements of I may be put into G later

Extension of conditions. (F, I) is extended by (F', I') if

•
$$F \subseteq F' \subseteq F \cup I$$

• and $I \supseteq I'$

A condition (F, I) can be extended by choosing some elements of I to add to F and removing some elements from I

End result of Mathias forcing: An infinite set $G \subseteq \mathbb{N}$ Conditions. (F, I) specifying $F \subseteq G \subseteq F \cup I$ Extension. $(F, I) \ge (F', I')$ means $F \subseteq F' \subseteq F \cup I$ and $I' \subseteq I$

For any filter \mathcal{G} for Mathias forcing, define $G = \bigcup_{(F,I) \in \mathcal{G}} F$ *G* is the set being specified by the Mathias conditions in \mathcal{G}

Definition. A set $B \subseteq \mathbb{N}$ is compatible with a condition (F, I) if $F \subseteq B \subseteq F \cup I$.

•	••	$\bullet \odot \odot \bullet (\bullet)$	• (•) •	$\bullet_{i}\left(\widehat{\bullet}\right) \left(\widehat{\bullet}\right) \left(\widehat{\bullet}\right) \ \bullet$	• (•)(•) •	• • •
••	••	• • • • •	• • •	• • • •	• • • •	

The point. A condition (F, I) says that the set G being built is compatible with (F, I). So to ensure G has some property, we can try to ensure *all* sets compatible with (F, I) have that property.

Goal. An infinite subset of A which does not compute X

General strategy. Pick a generic filter G and let $G = \bigcup_{(F,I) \in G} F$. For each *n*, define

$$\begin{split} D_n &= \{(F,I) \mid |F| \geq n\} \\ E_n &= \{(F,I) \mid \text{for all } B \text{ compatible with } (F,I), \ \Phi_n(B) \neq X\}. \end{split}$$

To show that:

(1)
$$\boldsymbol{G} \subseteq \boldsymbol{A}$$
: make sure $(\emptyset, A) \in \mathcal{G}$.

(2) **G** is infinite: show that for each n, D_n is dense.

(3) **G** does not compute X: show that for each n, E_n is dense.

Alternative view. Choose a sequence

$$(\varnothing, A) = (F_0, I_0) \ge (F_1, I_1) \ge (F_2, I_2) \ge \ldots$$

so that each (F_{n+1}, I_{n+1}) is in both D_n and E_n . Define $G = \bigcup_n F_n$.

Approach 1: Pure Mathias forcing

Theorem (Harrison-Trainor and L.). For any uncomputable X and set $A \subseteq \mathbb{N}$ of positive lower density, A has an infinite subset which does not compute X.

Strategy. Pick a Mathias generic G compatible with (\emptyset, A) and show that for each n,

 $D_n = \{(F, I) \mid |F| \ge n\}$ $E_n = \{(F, I) \mid \text{for all } B \text{ compatible with } (F, I), \ \Phi_n(B) \ne X\}$

are both dense.

It's easy to pick G compatible with (\emptyset, A) It's easy to show each D_n is dense.

Problem. E_n is not always dense.

Suppose every infinite subset of I computes X via Φ_n . No extension of (\emptyset, I) is in E_n : If $(\emptyset, I) \ge (F', I')$ then $B = F' \cup I'$ is compatible with (F', I') and $\Phi_n(B) = X$.

Solution. Restrict which sets are allowed to be reservoirs.

Approach 2: Mathias forcing with dense reservoirs

Approach. Use Mathias forcing and show that for each n, the set

 $E_n = \{(F, I) \mid \text{for all } B \text{ compatible with } (F, I), \Phi_n(B) \neq X\}$

is dense.

Problem. E_n is not always dense.

Solution. Restrict which sets are allowed to be reservoirs. Try to forbid sets whose infinite subsets all compute X

Natural idea. Require reservoirs to have positive lower density.

Problem. E_n is still not dense.

Claim. In Mathias forcing where reservoirs are required to have positive lower density, there is some n such that the set

 $E_n = \{(F, I) \mid \text{for all } B \text{ compatible with } (F, I), \Phi_n(B) \neq X\}$

is not dense.

Fact. There is a set I of positive lower density such that all subsets of I of positive lower density compute X uniformly.

Proof of claim.Let I be as in the fact and suppose all subsets of I of positive lower density compute X via Φ_n .

No extension of (\emptyset, I) is in E_n .

If (F', I') extends (\emptyset, I) and I' has positive lower density then $B = F' \cup I'$ is compatible with (F', I') and has positive lower density, hence $\Phi_n(B) = X$ Approach 3: Mathias forcing with somewhat dense reservoirs

Approach. Use Mathias forcing and show that for each n,

 $E_n = \{(F, I) \mid \text{for all } B \text{ compatible with } (F, I), \Phi_n(B) \neq X\}$

is dense.

Problem. E_n is not always dense:

- (1) When there are no restrictions on the reservoirs
- (2) When reservoirs are required to have positive lower density

In (1), there are too many possible reservoirs: we could have (F, I) where all infinite subsets of I compute X.

In (2), there are too few possible reservoirs: for a given (F, I), we may not be able to "thin out" I enough to witness that not all of its infinite subsets compute X

We want something in the middle.

Definition. A set $A \subseteq \mathbb{N}$ is

• δ -dense at n if

$$\frac{|A\cap [n]|}{n+1}\geq \delta.$$

- δ -dense along $D \subseteq \mathbb{N}$ if for all $n \in D$, A is δ -dense at n.
- dense along D if A is δ -dense along D for some $\delta > 0$.

Observations.

- A has positive lower density if and only if A is dense along $\mathbb N$
- A has positive upper density if and only if A is dense along some infinite D

The point. If A is δ -dense along D, think of δ and D as witnessing the positive upper density of A.

Note that "A has positive upper density" is $\Sigma^0_3,$ but "A is $\delta\text{-dense}$ along D" is Π^0_1

Approach. Use Mathias forcing and show that for each n,

 $E_n = \{(F, I) \mid \text{for all } B \text{ compatible with } (F, I), \Phi_n(B) \neq X\}$

is dense.

Definition. A Mathias condition (F, I) is a density Mathias condition if there is some infinite set D such that I is dense along D and D does not compute X

Restricting to density Mathias conditions works!

 (\emptyset, A) is a density Mathias condition as witnessed by \mathbb{N} .

Key Lemma. For any n, the set E_n above is dense for density Mathias forcing.

Enter Seetapun's theorem

Definition. A Mathias condition (F, I) is a density Mathias condition if there is some infinite set D such that I is dense along D and D does not compute X

Strategy. Use density Mathias forcing and show that for each *n*,

 $E_n = \{(F, I) \mid \text{for all } B \text{ compatible with } (F, I), \Phi_n(B) \neq X\}$

is dense.

Useful lemma. If A has positive lower density and $A = A_0 \cup A_1$ then at least one of (\emptyset, A_0) and (\emptyset, A_1) is a density Mathias condition.

Note: It is easy to find sets A_0, A_1 such that $A_0 \cup A_1$ has positive lower density but neither A_0 nor A_1 do.

This explains why we use sets of positive upper density as reservoirs when the statement only mentions positive lower density.

Definition. A Mathias condition (F, I) is a density Mathias condition if there is some infinite set D such that I is dense along D and D does not compute X

Useful lemma. If A has positive lower density and $A = A_0 \cup A_1$ then at least one of (\emptyset, A_0) and (\emptyset, A_1) is a density Mathias condition.

Seetapun's theorem. For any uncomputable X and set $A \subseteq \mathbb{N}$, there is an infinite subset of either A or \overline{A} which does not compute X.

Proof of lemma. Pick $\delta > 0$ such that A is δ -dense at every n. Define $B = \{n \mid A_0 \text{ is } \delta/2\text{-dense at } n\}.$

Note that if $n \notin B$ then A_1 must be $\delta/2$ -dense at n.

Seetapun's theorem \implies either *B* or \overline{B} contains an infinite subset *D* which does not compute *X*.

 $D \subseteq B \implies (\emptyset, A_0)$ is a density Mathias condition $D \subseteq \overline{B} \implies (\emptyset, A_1)$ is a density Mathias condition.