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Problem. Given a set X , find an infinite set A ⊆ N such that all infinite
subsets of A compute X .

Classic solution. Think of A as a subset of 2<ω and let A be the set of
initial segments of X

A

X = 10110100 . . .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 00 01 10 11 000 001 010 011 100 101 110 111

. . .

As a subset of N, A is sparse.
Number of elements of A less than n ≈ log(n)

Question. Given a set X is there always a dense set A ⊆ N such that
all infinite subsets of A compute X?



Question. Given a set X is there always a dense set A ⊆ N such that
all infinite subsets of A compute X?

To answer this question, we need to decide what “dense” means.

Definition. Given a set A ⊆ N,

lower density of A = ρ(A) = lim inf
n→∞

|A ∩ [n]|
n + 1

upper density of A = ρ(A) = lim sup
n→∞

|A ∩ [n]|
n + 1

For any uncomputable X ,
Theorem (Harrison-Trainor and L.). For any set A ⊆ N of positive
lower density, A has an infinite subset which does not compute X .
Theorem (anyone in this room). There is a set A of positive upper
density such that every infinite subset of A computes X .



Theorem (anyone in this room). For any X , there is a set A of positive
upper density such that every infinite subset of A computes X .

Proof.

A

X = 10110100 . . .

0 1 00 01 10

Theorem (Harrison-Trainor and L.). For any uncomputable X and set
A ⊆ N of positive lower density, A has an infinite subset which does
not compute X .

Key ingredients:
(1) Mathias forcing
(2) Seetapun’s theorem1. For every uncomputable set X and set

A ⊆ N, there is an infinite subset of either A or A which does not
compute X .

1First explicitly proved by Dhzafarov and Jockusch and sometimes called “strong
cone avoidance for RT1

2.”



Mathias forcing



End result of Mathias forcing: An infinite set G ⊆ N

Conditions. Pairs (F , I ) such that
• F is a finite subset of N, called the stem of the condition
• I is an infinite subset of N, called the reservoir of the condition

. . .

A condition (F , I ) is a partial specification of G : elements of F have
already been put into G and elements of I may be put into G later

Extension of conditions. (F , I ) is extended by (F ′, I ′) if
• F ⊆ F ′ ⊆ F ∪ I

• and I ⊇ I ′

. . .

. . .

A condition (F , I ) can be extended by choosing some elements of I to
add to F and removing some elements from I



End result of Mathias forcing: An infinite set G ⊆ N
Conditions. (F , I ) specifying F ⊆ G ⊆ F ∪ I
Extension. (F , I ) ≥ (F ′, I ′) means F ⊆ F ′ ⊆ F ∪ I and I ′ ⊆ I

For any filter G for Mathias forcing, define G =
⋃

(F ,I )∈G F

G is the set being specified by the Mathias conditions in G

Definition. A set B ⊆ N is compatible with a condition (F , I ) if
F ⊆ B ⊆ F ∪ I .

. . .

. . .

The point. A condition (F , I ) says that the set G being built is
compatible with (F , I ). So to ensure G has some property, we can try
to ensure all sets compatible with (F , I ) have that property.



Goal. An infinite subset of A which does not compute X

General strategy. Pick a generic filter G and let G =
⋃

(F ,I )∈G F .
For each n, define

Dn = {(F , I ) | |F | ≥ n}
En = {(F , I ) | for all B compatible with (F , I ), Φn(B) 6= X}.

To show that:
(1) G ⊆ A: make sure (∅,A) ∈ G.
(2) G is infinite: show that for each n, Dn is dense.
(3) G does not compute X : show that for each n, En is dense.

Alternative view. Choose a sequence

(∅,A) = (F0, I0) ≥ (F1, I1) ≥ (F2, I2) ≥ . . .

so that each (Fn+1, In+1) is in both Dn and En. Define G =
⋃

n Fn.



Approach 1: Pure Mathias forcing



Theorem (Harrison-Trainor and L.). For any uncomputable X and set
A ⊆ N of positive lower density, A has an infinite subset which does
not compute X .
Strategy. Pick a Mathias generic G compatible with (∅,A) and show
that for each n,

Dn = {(F , I ) | |F | ≥ n}
En = {(F , I ) | for all B compatible with (F , I ), Φn(B) 6= X}

are both dense.

It’s easy to pick G compatible with (∅,A)

It’s easy to show each Dn is dense.

Problem. En is not always dense.

Suppose every infinite subset of I computes X via Φn.
No extension of (∅, I ) is in En: If (∅, I ) ≥ (F ′, I ′) thenB = F ′ ∪ I ′ is
compatible with (F ′, I ′)and Φn(B) = X .

Solution. Restrict which sets are allowed to be reservoirs.



Approach 2: Mathias forcing with dense
reservoirs



Goal: Given A of positive lower density and X uncomputable, find an
infinite G ⊆ A which doesn’t compute X

Approach. Use Mathias forcing and show that for each n, the set

En = {(F , I ) | for all B compatible with (F , I ), Φn(B) 6= X}

is dense.

Problem. En is not always dense.

Solution. Restrict which sets are allowed to be reservoirs. Try to forbid
sets whose infinite subsets all compute X

Natural idea. Require reservoirs to have positive lower density.

Problem. En is still not dense.



Claim. In Mathias forcing where reservoirs are required to have positive
lower density, there is some n such that the set

En = {(F , I ) | for all B compatible with (F , I ), Φn(B) 6= X}

is not dense.

Fact. There is a set I of positive lower density such that all subsets of I
of positive lower density compute X uniformly.

Proof of claim.Let I be as in the fact and suppose all subsets of I of
positive lower density compute X via Φn.
No extension of (∅, I ) is in En.
If (F ′, I ′) extends (∅, I ) and I ′ has positive lower density then
B = F ′ ∪ I ′ is compatible with (F ′, I ′) and has positive lower density,
hence Φn(B) = X



Approach 3: Mathias forcing with
somewhat dense reservoirs



Goal: Given A of positive lower density and X uncomputable, find an
infinite G ⊆ A which doesn’t compute X

Approach. Use Mathias forcing and show that for each n,

En = {(F , I ) | for all B compatible with (F , I ), Φn(B) 6= X}

is dense.
Problem. En is not always dense:
(1) When there are no restrictions on the reservoirs
(2) When reservoirs are required to have positive lower density

In (1), there are too many possible reservoirs: we could have (F , I )
where all infinite subsets of I compute X .
In (2), there are too few possible reservoirs: for a given (F , I ), we may
not be able to “thin out” I enough to witness that not all of its infinite
subsets compute X

We want something in the middle.



Definition. A set A ⊆ N is
• δ-dense at n if

|A ∩ [n]|
n + 1

≥ δ.

• δ-dense along D ⊆ N if for all n ∈ D, A is δ-dense at n.
• dense along D if A is δ-dense along D for some δ > 0.

Observations.
• A has positive lower density if and only if A is dense along N
• A has positive upper density if and only if A is dense along some

infinite D

The point. If A is δ-dense along D, think of δ and D as witnessing
the positive upper density of A.

Note that “A has positive upper density” is Σ0
3, but “A is δ-dense along

D” is Π0
1



Goal: Given A of positive lower density and X uncomputable, find an
infinite G ⊆ A which doesn’t compute X

Approach. Use Mathias forcing and show that for each n,

En = {(F , I ) | for all B compatible with (F , I ), Φn(B) 6= X}

is dense.

Definition. A Mathias condition (F , I ) is a density Mathias condition if
there is some infinite set D such that I is dense along D and D does
not compute X

Restricting to density Mathias conditions works!

(∅,A) is a density Mathias condition as witnessed by N.
Key Lemma. For any n, the set En above is dense for density Mathias
forcing.



Enter Seetapun’s theorem



Goal: Given A of positive lower density and X uncomputable, find an
infinite G ⊆ A which doesn’t compute X

Definition. A Mathias condition (F , I ) is a density Mathias condition if
there is some infinite set D such that I is dense along D and D does
not compute X

Strategy. Use density Mathias forcing and show that for each n,

En = {(F , I ) | for all B compatible with (F , I ), Φn(B) 6= X}

is dense.

Useful lemma. If A has positive lower density and A = A0 ∪ A1 then at
least one of (∅,A0) and (∅,A1) is a density Mathias condition.

Note: It is easy to find sets A0,A1 such that A0 ∪ A1 has positive
lower density but neither A0 nor A1 do.

This explains why we use sets of positive upper density as reservoirs
when the statement only mentions positive lower density.



Definition. A Mathias condition (F , I ) is a density Mathias condition if
there is some infinite set D such that I is dense along D and D does
not compute X

Useful lemma. If A has positive lower density and A = A0 ∪ A1 then at
least one of (∅,A0) and (∅,A1) is a density Mathias condition.

Seetapun’s theorem. For any uncomputable X and set A ⊆ N, there is
an infinite subset of either A or A which does not compute X .

Proof of lemma. Pick δ > 0 such that A is δ-dense at every n.
Define B = {n | A0 is δ/2-dense at n}.
Note that if n /∈ B then A1 must be δ/2-dense at n.
Seetapun’s theorem =⇒ either B or B contains an infinite subset D
which does not compute X .
D ⊆ B =⇒ (∅,A0) is a density Mathias condition
D ⊆ B =⇒ (∅,A1) is a density Mathias condition.


