MATH 54 SUMMER 2017, QUIZ 9

Mark each of the following true or false and give a short explanation.

(a) The set of nonnegative real numbers (i.e. $[0, \infty)$) is a subspace of \mathbb{R} .

False. It is not closed under scalar multiplication. For instance, $5 \in [0, \infty)$ but $-1.5 = -5 \notin (0, \infty)$.

(b) $\{0\}$ is a subspace of \mathbb{R}^n ,

True.

True.

O $\vec{O} \in \{\vec{o}\}$ O $\vec{U} = \{\vec{o}\}$ Then $\vec{u} = \vec{O}$ and $\vec{v} = \vec{O}$ so $\vec{u} + \vec{v} = \vec{O} + \vec{O} = \vec{O} \in \{\vec{o}\}\}$.

O $\vec{u} + \vec{v} = \vec{O} + \vec{O} = \vec{O} \in \{\vec{o}\}\}$.

O $\vec{u} = \vec{v} = \vec{O} = \vec{O} \in \{\vec{o}\}$.

O There are vectors \vec{v}_1 and \vec{v}_2 in \vec{R}^3 such that $\vec{s} = \vec{O} = \vec{O} \in \{\vec{o}\}$.

False. The vectors $\vec{v}_1, \vec{v}_2, \vec{J} = \vec{v}_1 + \vec{v}_2$ can wever be linearly independent because

$$3 \cdot \vec{V}_1 + \vec{V}_2 \sim 1 \cdot (3\vec{V}_1 + \vec{V}) = \vec{O}$$

(d) The following vectors are a basis for \mathbb{R}^3 :

 $\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}.$ False. Two vectors cannot span all of \mathbb{R}^3 because the corresponding matrix cannot have a pivot in every row.