MATH 54 SUMMER 2017, QUIZ 14

Suppose \mathbf{v} is a vector in \mathbb{R}^2 such that $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} -3\\ 2 \end{bmatrix}$, where \mathcal{B} and \mathcal{C} are the bases for \mathbb{R}^2 shown below (you do not need to check that they are bases for \mathbb{R}^2).

$$\mathcal{B} = \left\{ \begin{bmatrix} 2\\4 \end{bmatrix}, \begin{bmatrix} 3\\-1 \end{bmatrix} \right\} \quad \mathcal{C} = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 2\\2 \end{bmatrix} \right\}$$

(a) What is \mathbf{v} ?

Since

$$[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} -3\\ 2 \end{bmatrix}$$
we know that

$$\mathbf{v} = -3\begin{bmatrix} 2\\ 4 \end{bmatrix} + 2\begin{bmatrix} 3\\ -1 \end{bmatrix} = \begin{bmatrix} -6+6\\ -12-2 \end{bmatrix} = \begin{bmatrix} 0\\ -14 \end{bmatrix}$$
Another valid way to find the solution is to multiply $[\mathbf{v}]_{\mathcal{B}}$ by $\underset{\mathcal{E} \leftarrow \mathcal{B}}{P} = \begin{bmatrix} 2 & 3\\ 4 & -1 \end{bmatrix}$.

(b) What is $[\mathbf{v}]_{\mathcal{C}}$?

We know **v** so to find $[\mathbf{v}]_{\mathcal{C}}$ we need to find real numbers a and b such that $\mathbf{v} = a \begin{bmatrix} 2\\1 \end{bmatrix} + b \begin{bmatrix} 2\\2 \end{bmatrix}$ This amounts to solving the following system: $\begin{bmatrix} 2 & 2 & | & 0\\1 & 2 & | & -14 \end{bmatrix} \xrightarrow{R1 = \frac{1}{2}R1} \begin{bmatrix} 1 & 1 & | & 0\\1 & 2 & | & -14 \end{bmatrix} \xrightarrow{R2 = R2 - R1} \begin{bmatrix} 1 & 1 & | & 0\\0 & 1 & | & -14 \end{bmatrix}$ $\xrightarrow{R1 = R1 - R2} \begin{bmatrix} 1 & 0 & | & 14\\0 & 1 & | & -14 \end{bmatrix}$ Therefore $[\mathbf{v}]_{\mathcal{C}} = \begin{bmatrix} 14\\-14 \end{bmatrix}$. Another perfectly acceptable way to find the solution was to compute $\underset{\mathcal{C} \leftarrow \mathcal{E}}{P}$ by inverting $\underset{\mathcal{E} \leftarrow \mathcal{C}}{P} = \begin{bmatrix} 2 & 2\\1 & 2 \end{bmatrix}$

Date: July 16, 2017.

Another perfectly acceptable way to find the solution was to compute $\underset{C \leftarrow B}{P}$ by row reducing

$$\begin{bmatrix} 2 & 2 & 2 & 3 \\ 1 & 2 & 4 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} I_2 \mid P \\ c \leftarrow B \end{bmatrix}$$