
Math 54 Final, Summer 2017

Instructor: Patrick Lutz

August 11, 2017

Name:

Pledge: I promise I will not cheat on this exam in any way.

Sign Here:

Instructions: Answer each question in the space provided. If you run out of room, use
the blank pages at the end. Good luck!

Algebra is the offer made by the devil to the mathematician. The devil says: “I will give
you this powerful machine, it will answer any question you like. All you need to do is give

me your soul: give up geometry and you will have this marvellous machine.”
–Sir Michael Atiyah

Question Points Score

1 2

2 4

3 4

4 5

5 4

6 9

7 4

8 2

9 16

Total: 50

Don’t turn over this page until you are told to do so.
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1. Carefully complete each of the following definitions.

(a) (1 point) The vector u is in the span of the vectors v1, v2, and v3 if and only if

Solution: for some c1, c2, c3 ∈ R, c1v1 + c2v2 + c3v3 = u. Equivalently, u is a
linear combination of v1, v2, and v3.

Common Mistakes: Some people wrote that c1, c2, c3 should not all be
0. That phrase appears in the definition of linear independence, but is not
correct here since 0 is in the span of v1, v2, and v3 (cf. the common mistakes
of question 9 part (a)). I did not take off points for this mistake.

Another common mistake was to use a definition that only makes sense in Rn.
For instance, writing “the system [v1 v2 v3]x = u is consistent.”

(b) (1 point) The vector v in the vector space V is an eigenvector of the linear trans-
formation T : V → V with eigenvalue 5 if and only if

Solution: T (v) = 5v and v 6= 0.

Common Mistakes: Many people forgot to say that v cannot be the zero
vector. I did not take off points for this mistake.

For this question also, some people gave a definition that only makes sense in
Rn, such as “v is in Null(A− 5I) where A is the standard matrix of T .”

2. (4 points) Recall that the general solution to the heat equation with the usual boundary
values is

∞∑
n=1

ane
−β(nπL )

2
t sin

(nπ
L
x
)
.

Suppose β = 1 and L = π. Find a solution u(x, t) such that

u(x, 0) = 31 sin(301x)− sin(567x) + 12 sin(1000x).

Solution: Since β = 1 and L = π, the general solution is

∞∑
n=1

ane
−n2t sin (nx) .

To solve the initial value problem, we need to plug t = 0 into the general solution
and solve for the coefficients. In other words, we need to find coefficients an such
that

∞∑
n=1

an sin (nx) = 31 sin(301x)− sin(567x) + 12 sin(1000x).
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Normally we would use Fourier series to find these coefficients, but here that’s not
necessary. It is clear that a301 should be 31, a567 should be −1, a1000 should be 12,
and all other coefficients should be zero. Using these coefficients, the solution is

31e−31
2t sin(301x)− e−5672t sin(567x) + 12e−1000

2t sin(1000x)
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3. Let U = span{v1,v2}.

v1 =

3
2
3

 v2 =

−1
0
2


(a) (1 point) Find a matrix A such that Col(A) = U .

Solution:

A =

3 −1
2 0
3 2



(b) (2 points) Find a basis for Null(AT ).

Solution:

AT =

[
3 2 3
−1 0 2

]
To find the null space, we need to row reduce.[

3 2 3
−1 0 2

]
Swap R1 and R2−−−−−−−−−→

[
−1 0 2
3 2 3

]
R2=R2+3R1−−−−−−−→

[
−1 0 2
0 2 9

]
R2= 1

9
R2

−−−−−→
[
−1 0 2
0 2/9 1

]
Solving the homogeneous equation of the above matrix gives us

x3 is free

2

9
x2 + x3 = 0 =⇒ x2 = −2

9
x3

−x1 + 2x3 = 0 =⇒ x1 = 2x3

Putting this in parametric form gives us

x3

 2
−2

9

1


and therefore one basis for Null(AT ) is

 2
−2

9

1



Common Mistakes: The most common mistake on this problem was ma-
king an arithmetic error during the row reduction. I did take off a point for
this since it is easy to check that the result is in the null space of AT .
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(c) (1 point) Find a basis for U⊥.

Solution: Since Col(A)⊥ = Null(AT ) and since A was chosen so that U =
Col(A), the answer to this part is the same as the answer to the previous part.
So one basis for U⊥ is 

 2
−2

9

1


One person also noticed that taking the cross product of the two given vectors
will produce a third vector orthogonal to both. Since U has dimension 2, U⊥

has dimension 1 and so this third vector must form a basis for U⊥. However,
this solution only works in R3, whereas the method used above works in any
dimension.

Common Mistakes: Some people gave an answer to this question that
included vectors in R2. But since U is a subspace of R3, so is U⊥.

Also, some people gave answers that included the columns of A. But no
nonzero vector can ever be in a subspace and its orthogonal complement.

5



4. (5 points) Find the orthogonal projection of v on W .

W = span




1
2
−1
−2

 ,


5
3
1
0


 v =


8
0
0
9



Solution: There are two ways to solve this problem.

First method: One method is to find an orthogonal basis for W using the Gram-
Schmidt algorithm and then use this basis to calculate the orthogonal projection of
v on W .

Let u1 and u2 be the basis for W given in the problem statement. We will use
Gram-Schmidt on these two vectors to produce an orthogonal basis {v1,v2} for W .

v1 = u1

v2 = u2 − projspan{v1}(u2)

= u2 −
(
u2 · v1

v1 · v1

v1

)
= u2 −

(
10

10
v1

)

=


4
1
2
2


We can now calculate the projection of v on W :

projW (v) = projspan{v1}(v) + projspan{v2}(v)

=
v · v1

v1 · v1

v1 +
v · v2

v2 · v2

v2

=
−10

10
v1 +

50

25
v2

=


7
0
5
6


Second method: The second method is to use the algorithm for finding least
squares solutions. More precisely, let A be a matrix whose column space is W and
let x̂ be a least squares solution to Ax = v (recall that we can find the least squares
solution by solving ATAx̂ = ATv). Since Ax̂ is the projection of v on the column
space of A, Ax̂ is the answer to the question.
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Common Mistakes: The most common mistake was to neglect to first find an
orthogonal basis for W . Another common mistake was to use an incorrect formula
when computing orthogonal projections.
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5. (4 points) Write the following system of first order linear ODEs in normal form and
then find the general solution.

y′1(t) = 2y1(t) + 2y2(t)

y′2(t) = 2y1(t)− y2(t)

Solution: Normal form: [
y′1(t)
y′2(t)

]
=

[
2 2
2 −1

] [
y1(t)
y2(t)

]

To find the solution we need to find a basis of eigenvectors of the matrix

[
2 2
2 −1

]
.

Characteristic polynomial:

det

[
2− λ 2

2 −1− λ

]
= (2− λ)(−1− λ)− 4 = λ2 − λ− 6 = (λ− 3)(λ+ 2).

The roots of the characteristic polynomial are −2 and 3, both with multiplicity 1 (so
we only need to find one eigenvector for each).

Eigenvector with eigenvalue −2:[
2− (−2) 2

2 −1− (−2)

]
=

[
4 2
2 1

]
R1= 1

2
R1

−−−−−→
[
2 1
2 1

]
R2=R2−R1−−−−−−→

[
2 1
0 0

]
Solving the homogeneous equation of the above matrix gives us

x2 is free

x1 = −1

2
x2.

Arbitrarily choosing x2 = 2 gives us the eigenvector[
−1
2

]
Eigenvector with eigenvalue 3:[

2− (3) 2
2 −1− (3)

]
=

[
−1 2
2 −4

]
R2=R2+2R1−−−−−−−→

[
−1 2
0 0

]
Solving the homogeneous equation of the above matrix gives us

x2 is free

x1 = 2x2.
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Arbitrarily choosing x2 = 1 gives us the eigenvector[
2
1

]
Therefore the general solution to the ODE is

c1e
−2t
[
−1
2

]
+ c2e

3t

[
2
1

]
In other words, the general solution is

y1(t) = −c1e−2t + 2c2e
3t

y2(t) = 2c1e
−2t + c2e

3t
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6. For this problem, you may assume without checking that the vectors v1, v2, v3, and v4

shown below are linearly independent.

v1 =


2
4
6
8

 v2 =


1
−1
3
3

 v3 =


1
1
1
1

 v4 =


1
1
0
0


(a) (2 points) Suppose that T : R4 → R4 is a linear transformation such that

T (v1) = 2v1

T (v2) = v1 + 2v2

T (v3) = 3v3

T (v4) = v1

Find a basis B and a matrix A such that A is the matrix of T in the basis B—i.e.
such that B[T ]B = A.

Solution: There are many possible answers to this question (infinitely many
in fact, because R4 has infinitely many bases), but one of them is much easier
to compute than the others. We already know what T does to the vectors v1,
v2, v3, and v4, so let’s pick those vectors as our basis. In other words, let
B = {v1,v2,v3,v4}. Since any set of 4 linearly independent vectors in R4 must
span R4, B is actually a basis. Now let’s find the matrix of T in this basis.

A = B[T ]B =
[
[T (v1)]B [T (v1)]B [T (v1)]B [T (v1)]B

]
=
[
[2v1]B [v1 + 2v2]B [3v3]B [v1]B

]
=


2 1 0 1
0 2 0 0
0 0 3 0
0 0 0 0



Common Mistakes: A lot of people picked the same basis as the solution
above, but instead of writing B[T ]B, instead wrote the matrix E [T ]B. One of
the important concepts in this problem is that a linear transformation is com-
pletely determined by what it does to a basis, and so when we want to analyze
a linear transformation we can pick whatever basis is most convenient. In this
problem, we already know exactly what T does to the vectors v1, . . . ,v4, so
the basis consisting of those vectors is most convenient. A number of people
missed this aspect of the problem.

(b) (1 point) Find an invertible matrix P such that PAP−1 is the standard matrix of
T . You do not need to show that the matrix you find is invertible and you do not
need to find its inverse.
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Solution: Since A = B[T ]B, the matrix P should be the change of basis matrix
from B to the standard basis, E . In other words,

E [T ]E = P
E←B

B[T ]B P
B←E

so P should be P
E←B

. And the change of basis matrix P
E←B

just consists of the

vectors in the basis B, written in terms of the standard basis vectors (i.e. written
as coordinate vectors in the basis E). In other words,

P = P
E←B

=


2 1 1 1
4 −1 1 1
6 3 1 0
8 3 1 0



Common Mistakes: On this part of the problem, many people tried to
find eigenvectors of the matrix A. This was incorrect for two reasons. First of
all, this part of the problem does not really have anything to do with T or A,
it is really just asking you to write the change of basis matrix from the basis
you choose in part (a) to the standard basis. So unless you choose a basis
of eigenvectors in part (a), eigenvectors are not relevant to this part of the
problem. Second of all, the linear transformation T in this question happens
to not be diagonalizable (which doesn’t matter for any part of this problem).
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(c) (2 points) What is the kernel of T?

Solution: First we will find a basis for the null space of the matrix A. This
gives us a basis for the kernel of T , written as coordinate vectors in the basis
B. Since A is already in REF, solving the associated homogeneous equation is
easy:

x4 is free

3x3 = 0 =⇒ x3 = 0

2x2 = 0 =⇒ x2 = 0

2x1 + x2 + x4 = 0 =⇒ x1 = −1

2
x4

Writing this in parametric form gives us

x4


−1/2

0
0
1


and therefore a basis for Null(A) is


−1/2

0
0
1




But remember that A is the matrix for T in the basis B. So ker(T ) is actually
spanned by the vector whose coordinate vector in B is the vector above. In
other words,

ker(T ) = span

{
−1

2
v1 + v4

}
= span




0
−1
−3
−4




CommonMistakes: Many people did not realize that the vectors in Null(A)
are the coordinate vectors in the basis B of the vectors in ker(T ).

(d) (2 points) What is the dimension of the range of T?

Solution: By the rank theorem, dim(ker(T )) + dim(range(T )) = 4. Since we
found in the previous part that dim(ker(T )) = 1, this means that the dimension
of the range of T is 3.

12



Common Mistakes: Some people answered this question without giving
any explanation or showing any work.

(e) (2 points) What are the eigenvalues of T?

Solution: Since A is upper triangular, its eigenvalues are the entries on the
diagonal. And since the eigenvalues of a linear transformation are independent
of the choice of basis (i.e. similar matrices have the same eigenvalues), the
eigenvalues of A are the same as the eigenvalues of T . So the eigenvalues of T
are 2 (with multiplicity 2, though you weren’t required to say this), 3, and 0.
The question does not ask for eigenvectors for these eigenvalues, but they are
not hard to find. In particular, v1 is an eigenvector with eigenvalue 2, v3 is
an eigenvector with eigenvalue 3, and as we found in part (c), −1

2
v1 + v4 is an

eigenvector with eigenvalue 0.

Common Mistakes: A number of people did not realize that 0 was an
eigenvalue of T , despite finding a nontrivial element of ker(T ) in part (c).
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7. (4 points) Suppose the Fourier sine series of f(x) on the interval [0, π] is

∞∑
n=1

1

2n2
sin(nx).

Find the function g(x) in span{sin(x), sin(2x), sin(3x)} such that∫ π

0

(f(x)− g(x))2 dx

is as small as possible.

Solution: Consider the vector space C([0, π]) of functions on the interval [0, π]. De-
fine an inner product space on this vector space by 〈f1(x), f2(x)〉 =

∫ π
0
f1(x)f2(x) dx

(i.e. the inner product on this vector space that we used repeatedly for the last
week of the semester). With this inner product, the question is asking us to find
g(x) ∈ span{sin(x), sin(2x), sin(3x)} that minimizes

〈f(x)− g(x), f(x)− g(x)〉 = ||f(x)− g(x)||2.

This is something we have learned how to do in any inner product space: g(x) should
just be the orthogonal projection of f(x) on span{sin(x), sin(2x), sin(3x)}. Since we
have already seen in class that sin(x), sin(2x), and sin(3x) are orthogonal, this can
be calculated as follows:

g(x) = projspan{sin(x),sin(2x),sin(3x)}(f(x))

=
〈f(x), sin(x)〉
〈sin(x), sin(x)〉

sin(x) +
〈f(x), sin(2x)〉
〈sin(2x), sin(2x)〉

sin(2x) +
〈f(x), sin(3x)〉
〈sin(3x), sin(3x)〉

sin(3x)

Now observe that the coefficients in the linear combination above are exactly the
first three coefficients in the Fourier sine series for f(x). In other words, the solution
is

g(x) =
1

2(1)2
sin(x) +

1

2(2)2
sin(2x) +

1

2(3)2
sin(3x)

=
1

2
sin(x) +

1

8
sin(2x) +

1

18
sin(3x)

Common Mistakes: Many people tried calculating the sine series of g(x) and/or
f(x)− g(x), but got stuck because they didn’t know what g(x) was. It is actually
not too hard to calculate the Fourier series of either of these once you have found
g(x), but it is probably not helpful for solving the problem.

Also, some people did not explain their answer or gave explanations that contained
incorrect statements.
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8. (2 points) Let B be the basis for R3 shown below. You may assume without checking
that it is an orthonormal basis. Find P

B←E
.

B =


 1/

√
3

1/
√

3

−1/
√

3

 ,
2/
√

14

1/
√

14

3/
√

14

 ,
−4/

√
42

5/
√

42

1/
√

42



Solution: Since we are given the vectors in B written in terms of the standard basis,
it is easy to find P

E←B
. It is

 1/
√

3 2/
√

14 −4/
√

42

1/
√

3 1/
√

14 5/
√

42

−1/
√

3 3/
√

14 1/
√

42

 .
However, the question does not ask for P

E←B
; it asks for P

B←E
. Since P

B←E
= P
E←B

−1, we

need to invert the matrix above. Normally, this would be pretty annoying, but the
matrix above is orthogonal, so its inverse is just its transpose. In other words, the
answer is  1/

√
3 1/

√
3 −1/

√
3

2/
√

14 1/
√

14 3/
√

14

−4/
√

42 5/
√

42 1/
√

42



Common Mistakes: Some people got P
B←E

and P
E←B

mixed up. Many people

tried to invert P
E←B

using row reduction and were not successful (a few people

actually did this successfully and arrived at the correct answer).
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9. Mark each of the following true or false. If true, briefly explain why. If false, give a
counterexample. This question has eight parts on two pages.

(a) (2 points) If A and B are n × n matrices and u, v1, and v2 are vectors such that
u = Av1 +Bv2 then u is in span{v1,v2}.

Solution: False. Note that this would be true if A and B were scalars instead
of matrices—the point of this problem is that multiplying vectors by matrices
works very differently than multiplying vectors by scalars. There are many
possible counterexamples, some more complicated than others. Here is one:

A =

[
0 1
1 0

]
B =

[
0 0
0 0

]
v1 =

[
1
0

]
v2 =

[
0
0

]

So u = Av1 +Bv2 =

[
0
1

]
, which is not in the span of v1 and v2.

Common Mistakes: Some people correctly said that this was false, but
then gave an example where u actually was in the span of v1 and v2. The
most common pitfall here was to choose A and B so that u is the zero vector.
This is bad because the zero vector is in the span of any other set of vectors!

(b) (2 points) If A is an n × n matrix such that Ax = 0 has only the trivial solution
then for every b ∈ Rn, Ax = b is consistent.

Solution: True. Since Ax = 0 has only the trivial solution, when we put A in
RREF there is a pivot in every column (i.e. there are no free variables). Since
A is square, this means there must also be a pivot in every row and therefore
Ax = b has a solution for every b ∈ Rn.

Common Mistakes: Some people correctly said that the statement was
true, but gave explanations that made no use of the fact that A was square.
Since this statement can be false when A is not square, these explanations
were incomplete.

(c) (2 points) If {u,v} is a basis for R2, w is a vector in R2, and a, b, c, and d are real
numbers such that w = au + bv and w = cu + dv then a = c and b = d.

Solution: True. I accepted a wide variety of explanations for this problem.
Here is one explanation: if au+ bv = cu+ dv then (a− c)u+ (b− d)v = 0 and
since u and v are linearly independent, this implies that a− c = b− d = 0.

(d) (2 points) Suppose A and B are n × n matrices such that AB = BA. If v is an
eigenvector of B and Av is nonzero then Av is an eigenvector of B.
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Solution: True. Let λ be the eigenvalue of the eigenvector v of B. Then we
have

B(Av) = (BA)v

= (AB)v

= A(Bv)

= A(λv)

= λ(Av)

Since Av is nonzero, this means Av is an eigenvector of B with eigenvalue λ.

Common Mistakes: Several people claimed that A and B are similar,
which is not necessarily true: similar matrices don’t necessarily commute,
and commuting matrices are not necessariy similar.

Some people also seemed to think the question was asking if v was an ei-
genvector of A. That is in general false and also not what the question is
asking.

Some people also wrote things like Bv = λv =⇒ BvA = λvA. But in this
class we never talked about multiplying a vector by a matrix on the right, so
this doesn’t make sense.
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(e) (2 points) If A is an n× n matrix such that A4 = In then the only possible eigen-
values of A are 1 and −1.

Solution: False. The eigenvalues of A could also be i and −i. For instance if

A =

[
0 −1
1 0

]
then A4 = I2 but the eigenvalues of A are i and −i.
Notice that the above example is a matrix with real entries. Since the problem
did not say A had to be real, I also accepted examples like[

i 0
0 i

]
.

In fact, this was more or less the example given by everyone who got the problem
correct—nobody gave an example of a real matrix with complex eigenvalues. /

Common Mistakes: Many people correctly observed that if λ is an eigen-
value of A then it must satisfy λ4 = 1, but incorrectly concluded that this
meant the only possibilities were 1 and −1.

Some people seemed to think the problem was saying that if A4 = In then
A must have both 1 and −1 as eigenvaues. However, that is not what the
statement above means.

(f) (2 points) If A is an n× n diagonalizable matrix whose only eigenvalues are 0 and
5 then Col(A) is equal to the eigenspace of the eigenvalue 5.

Solution: True. We need to show that everything in Col(A) is in the eigenspace
of the eigenvalue 5 and also that everything in the eigenspace of eigenvalue 5 is
in Col(A).

Since A is diagonalizable, there is some basis v1, . . . ,vn of eigenvectors of A.
Let’s suppose that the first k of them have eigenvalue 5 and the rest have
eigenvalue 0. Let x be any vector in Rn. Then for some a1, . . . , an, x = a1v1 +
. . .+ anvn. Since the basis vectors are eigenvectors of A, we have

Ax = a1Av1 + . . . anAvn = 5a1v1 + . . .+ 5akvk.

This last vector is a linear combination of eigenvectors of A with eigenvalue 5
and hence it is in the eigenspace of the eigenvalue 5. Therefore any vector in
Col(A) is also in the eigenspace of the eigenvalue 5.

On the other hand, if x is in the eigenspace of the eigenvalue 5 then by definition,
Ax = 5x. Therefore A

(
1
5
x
)

= x and so x ∈ Col(A).

Several people wrote something along the following lines, which I also accepted:
since A is diagonalizable, it is similar to a diagonal matrix whose diagonal
contains only 0’s and 5’s. It is obvious that for such a matrix, its column space
is equal to the eigenspace of eigenvalue 5. Since this fact does not depend on
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which basis we represent things in, this must also be true for the matrix A.
By the way, the above argument is essentially a more precise version of this
argument.

Common Mistakes: Many people gave incomplete explanations or proved
it only for a specific 2× 2 matrix.

(g) (2 points) If f(x) is a solution to the ODE y′′(x) − 9y(x) = sin2(ex) then so is
2e3x + f(x).

Solution: True. There are several ways to see this. Some people simply plug-
ged 2e3x + f(x) into the differential equation and observed that it is satisfied.
Another way to do this is as follows. Let T be the linear transformation d2

dx2
−9I.

Then the problem is saying that T (f(x)) = sin2(ex). Observe that

T (2e2x) =
d2

dx2
(2e3x)− 9I(2e3x) = 18e3x − 18e3x = 0

and therefore 2e3x ∈ ker(T ). Since T is a linear transformation, this means
T (2e3x + f(x)) = T (2e3x) + T (f(x)) = 0 + sin2(ex) = sin2(ex).

Another way to say all of this is that a solution to a nonhomogeneous linear
ODE plus a solution to the corresponding homogeneous ODE is also a solution
to the original nonhomogeneous ODE.

(h) (2 points) There is no homogeneous, linear ODE for which ex cos(x) and ex are
both solutions.

Solution: This is false. For instance, if the ODE is constant-coefficient then
both functions will be solutions as long as the auxiliary equation has 1 + i, 1− i
and 1 as roots. In other words, the auxiliary equation could be

(r − (1− i))(r − (1 + i))(r − 1) = (r2 − 2r + 2)(r − 1) = r3 − 3r2 + 4r − 2

and so one possible counterexample is

y′′′ − 3y′′ + 4y′ − 2y = 0.
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Common Mistakes: Many people thought this problem was true because
of a calculation involving the Wronskian of ex cos(x) and ex. Unfortunately
this only tells us that there is no second order linear ODE with both functions
as solutions. This is something that I completely failed to say clearly in class
and that I probably further contributed to confusion about with a problem
on the practice final. Therefore I have decided to count this exam out of 48
points. If you solved this problem correctly you still got points for it, but if
not, it won’t hurt your score on the final.

Also, some people who correctly said this statement was false did not realize
that for ex cos(x) to be a solution, both 1 + i and 1− i must be roots of the
auxiliary equation.
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