Review

For each item below, explain why it is true or provide a counterexample to show it is false.

- 1. It is not possible to find n vectors in \mathbb{R}^n that are linearly dependent.
- 2. Every list of n vectors in \mathbb{R}^n spans all of \mathbb{R}^n .
- 3. If a list of n vectors in \mathbb{R}^n is linearly independent then it spans all of \mathbb{R}^n .
- 4. If a list of n vectors in \mathbb{R}^n spans all of \mathbb{R}^n then it is linearly independent.

Linear Transformations

1. For each matrix below, make a drawing for the function from $\mathbb{R}^2 \to \mathbb{R}^2$ that it defines.

(a)
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (c) $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ (e) $\begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix}$
(b) $\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix}$ (f) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

2. Is the function $T \colon \mathbb{R}^2 \to \mathbb{R}^3$ defined by

$$T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}xy\\y\\x\end{bmatrix}$$

a linear transformation?

- 3. If $T: \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation and $\mathbf{x}_1, \ldots, \mathbf{x}_p$ are linearly dependent vectors in \mathbb{R}^m then are $T(\mathbf{x}_1), \ldots, T(\mathbf{x}_p)$ linearly dependent?
- 4. If $T: \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation and $\mathbf{x}_1, \ldots, \mathbf{x}_p$ are linearly independent vectors in \mathbb{R}^m then are $T(\mathbf{x}_1), \ldots, T(\mathbf{x}_p)$ linearly independent?
- 5. If $T: \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation and $\mathbf{x}_1, \ldots, \mathbf{x}_p$ are vectors in \mathbb{R}^m whose span is all of \mathbb{R}^m then do $T(\mathbf{x}_1), \ldots, T(\mathbf{x}_p)$ span all of \mathbb{R}^n ?
- 6. Suppose $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation such that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}5\\3\\-1\end{bmatrix} \text{ and } T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}2\\1\\1\end{bmatrix}.$$

What is $T\left(\begin{bmatrix}2\\3\end{bmatrix}\right)$?

1

- 7. Write the standard matrix for each of the following linear transformations from $\mathbb{R}^2 \to \mathbb{R}^2$.
 - (a) Reflection across the line $x_2 = x_1$.
 - (b) Rotation by 90° followed by expansion by 3 in the horizontal direction.
 - (c) Everything is sent to **0**.
- 8. Is the linear transformation defined by the following matrix one-to-one? Onto?

1	0
0	1
0	0

9. Is the linear transformation defined by the following matrix one-to-one? Onto?

$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$