Review

- 1. Write an initial value problem for which $3e^t e^{-2t} + 5$ is the unique solution.
- 2. Find a solution to the following initial value problem. How many solutions are there?

$$y'' - y = 0; \quad y(0) = 2$$

3. Find a solution to the following initial value problem. You will probably be able to guess the solution without using row reduction.

$$y'' - y = 0;$$
 $y(1) = 3e + 5e^{-1};$ $y'(1) = 3e - 5e^{-1}$

A Little Bit of Theory

For the questions in this section, let V be the vector space of infinitely differentiable functions from \mathbb{R} to \mathbb{R} (commonly denoted $C^{\infty}(\mathbb{R})$).

- 1. Let $T: V \to V$ be the linear transformation defined by $T(f) = \frac{df}{dt}$. Are e^{2t} and e^{3t} eigenvectors of T? If so, what are the corresponding eigenvalues?
- 2. Let $T: V \to V$ be the linear transformation defined by $T(f) = \frac{df}{dt} 2f$. In other words, $T = \frac{d}{dt} 2I$. What is $T(e^{3t})$? What about $T(e^{3t})$?
- 3. Let $T_1: V \to V$ and $T_2: V \to V$ be the linear transformations defined by $T_1(f) = \frac{df}{dt} 2f$ and $T_2(f) = \frac{df}{dt} - 3f$. Let $T = T_1 \circ T_2$. Is e^{2t} in the kernel of T?
- 4. Let $T: V \to V$ be the linear transformation defined by $T(f) = \frac{df}{dt} 2f$. What is $T(te^{2t})$? What is $T(T(te^{2t}))$?

Repeated and Complex Roots

- 1. Find the general solution of the following differential equations.
 - (a) y'' 6y' + 9y = 0 (b) y''' 5y'' = 0
- 2. Find the general solution of the following differential equations.
 - (a) y'' 6y' + 10y = 0 (b) y'' + 4y' + 6y = 0.
- 3. Write a differential equation such that $t^2e^{3t} + 5$ is a solution.
- 4. Write a differential equation such that $e^{-2t}\cos(4t) + e^t$ is a solution.

Definitions and Theorems

Definitions:

• Pre-Wronskian

 \bullet Wronskian

Main Theorem Today: How to find all solutions of a linear, constant coefficient, homogeneous ODE of any order.

Most important idea today: Factoring the auxiliary equation is equivalent to "factoring" a linear transformation. This (almost) lets us reduce a higher order differential equation to solving several first order equations. (The "almost" is because there may be repeated roots.)