Review

- 1. True or false: every set of linearly independent vectors is orthogonal.
- 2. Let $W = \text{span}\{\mathbf{v}_1, \mathbf{v}_2\}$ and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. Find the coordinate vector for **u** in the basis \mathcal{B} of the subspace W.

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 1\\2\\-3 \end{bmatrix} \quad \mathbf{u} = \begin{bmatrix} 1\\0\\5 \end{bmatrix}$$

- 3. (This one is kind of tricky.) Show that if $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are any linearly independent vectors in \mathbb{R}^n then there is some vector in \mathbb{R}^n not orthogonal to \mathbf{v}_1 but orthogonal to all of $\mathbf{v}_2, \ldots, \mathbf{v}_k$. (Hint: If A is the matrix whose columns are $\mathbf{v}_1, \ldots, \mathbf{v}_k$, can you rewrite this problem as a question about finding a solution to some equation involving A^T ?)
- 4. Challenge Problem: If A is an $n \times m$ matrix of rank s and B is an $p \times r$ matrix of rank t, what is the dimension of the vector space $\{X \in M_{m \times p} \mid AXB = 0\}$?

Projections

1. If $W = \text{span}\{\mathbf{v}_1, \mathbf{v}_2\}$ then find a vector $\widehat{\mathbf{y}}$ in W and a vector \mathbf{z} orthogonal to W such that $\mathbf{y} = \widehat{\mathbf{y}} + \mathbf{z}$. What is the distance from \mathbf{y} to W?

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$

2. Suppose W is a subspace of \mathbb{R}^3 and that \mathbf{y} and $\operatorname{proj}_W(\mathbf{y})$ are as shown below. What is $\operatorname{proj}_{W^{\perp}}(\mathbf{y})$?

$$\mathbf{y} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \quad \operatorname{proj}_W(\mathbf{y}) = \begin{bmatrix} 2\\0\\2 \end{bmatrix}$$

- 3. If W is a subspace of \mathbb{R}^n and $\mathbf{y} \in W$, what is $\operatorname{proj}_W(\mathbf{y})$? What about $\operatorname{proj}_{W^{\perp}}(\mathbf{y})$?
- 4. If W is a subspace of \mathbb{R}^n , V is a subspace of W and $\mathbf{y} \in \mathbb{R}^n$, show that $\operatorname{proj}_V(\operatorname{proj}_W(\mathbf{y})) = \operatorname{proj}_V(\mathbf{y})$.
- 5. If the columns of an $n \times m$ matrix U are orthogonal, what is $U^T U$?
- 6. Show that if the columns of an $n \times m$ matrix U are orthogonal then for any vector $\mathbf{x} \in \mathbb{R}^m$, $||U\mathbf{x}|| = ||\mathbf{x}||$.

Gram-Schmidt

1. Find an orthogonal basis for the column space of the following matrix.

$$\begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix}$$

Worksheet 21

Definitions and Theorems

Definitions:

- Orthogonal Projection
- Orthogonal matrix (Warning: Not what it sounds like). Also known as a unitary matrix.

Theorems:

- For any subspace W of \mathbb{R}^n , every vector can be written in a unique way as a sum of a vector in W and a vector in W^{\perp} . The first vector in this sum is the closest vector in W to the original vector.
- If the columns of U are an orthonormal set then $U^T U = I$.
- If U is an orthogonal matrix then U is invertible and $U^{-1} = U^T$.
- If the columns of U are an orthonormal set (note that this is not quite the same as saying that U is an orthogonal matrix) then for any \mathbf{x} and \mathbf{y} , $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$.
- Given any basis for a subspace, there is an algorithm to find an orthogonal basis for the same subspace (the Gram-Schmidt algorithm).

Most important idea today: The idea of orthogonal projections and the way that they allow you to find orthogonal bases (via Gram-Schmidt).