Review

- 1. What is $\{\mathbf{0}\}^{\perp}$? (Assume **0** here is referring to the zero vector in \mathbb{R}^n .)
- 2. What is $(\mathbb{R}^n)^{\perp}$?
- 3. If W is a subspace of \mathbb{R}^n , what is $W \cap W^{\perp}$?
- 4. Show that for any vector \mathbf{v} in \mathbb{R}^n , $\mathbf{v} \cdot \mathbf{v} \ge 0$. When is it exactly equal to zero?
- 5. Super useful fact: Show that if **u** is orthogonal to the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_m$ then it is orthogonal to every vector in span $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$.

Transpose and Orthogonal Complement

- 1. Show that for any $n \times m$ matrix A, $\operatorname{Col}(A)^{\perp} = \operatorname{Null}(A^T)$.
- 2. Show that for any $n \times m$ matrix A, dim(Row A) = dim(Col A).
- 3. Show that if W is a subspace of \mathbb{R}^n , $\dim(W^{\perp}) = n \dim(W)$. (Hint: think of W as the column space of some matrix.)
- 4. Show that $(W^{\perp})^{\perp} = W$.

Orthogonal Basis

- 1. Suppose W is a subspace of \mathbb{R}^n and $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$ is a basis for W. Also suppose **u** is in W and that $\mathbf{u} = c_1 \mathbf{v}_1 + \ldots + c_m \mathbf{v}_m$. If $1 \le i \le m$, what is $\mathbf{u} \cdot \mathbf{v}_i$?
- 2. Solve the following system of linear equations without doing any row reduction. (Hint: the columns of the coefficient matrix are orthogonal to each other.)

x_1	+	$6x_2$	+	$2x_3$	=	23
$2x_1$	_	x_2	+	x_3	=	1
$3x_1$			_	$16x_{3}$	=	-29
$4x_1$	_	x_2	+	$11x_{3}$	=	23

Definitions and Theorems

Definitions:

- Orthogonal
- Orthogonal complement
- Transpose
- Row Space

- Orthogonal Set, Orthogonal Basis
- Orthonormal Set, Orthonormal Basis
- Projection onto a subspace (i.e. $\operatorname{proj}_W(\mathbf{u})$)

Theorems:

- If a vector is orthogonal to every vector in a list then it is also orthogonal to all vectors in the span of that list.
- $\operatorname{Col}(A)^{\perp} = \operatorname{Null}(A^T)$
- $\operatorname{rank}(A) = \operatorname{rank}(A^T)$
- An orthogonal set of *nonzero* vectors is li-

nearly independent.

 For any subspace W of Rⁿ, every vector can be written in a unique way as a sum of a vector in W and a vector in W[⊥]. The first vector in this sum is the closest vector in W to the original vector.

Most important idea today: Suppose you want to figure out how to write one vector as a linear combination of a list of vectors. When the vectors in the list are all orthogonal to each other, it is super easy to do.