Review Questions

- 1. How many solutions does a system of linear equations have if the coefficient matrix in REF has:
 - (a) A pivot in every row?
 - (b) A pivot in every column?
 - (c) A free variable (i.e. a column with no pivot)?
 - (d) More columns than rows?
 - (e) More rows than columns?
- 2. For what values of c are the following augmented matrices consistent?

(a)
$$\begin{bmatrix} 1 & 2 & 0 & 3 & 1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & c \end{bmatrix}$$
 (b)

(b)
$$\begin{bmatrix} 1 & 2 & 3 \\ c & 3 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

Span

1. Is it possible to add together multiples of **a** and **b** to get **c**?

(a)
$$\mathbf{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

(a)
$$\mathbf{a} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $\mathbf{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\mathbf{c} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ (b) $\mathbf{a} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ $\mathbf{c} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

2. Is
$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
 in span $\left\{ \begin{bmatrix} 3\\1\\-2 \end{bmatrix}, \begin{bmatrix} 5\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\3 \end{bmatrix} \right\}$?

3. (a) What is span
$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$
? (b) What is span $\left\{ \begin{bmatrix} 3\\5 \end{bmatrix}, \begin{bmatrix} 3\\2 \end{bmatrix} \right\}$?

(b) What is span
$$\left\{ \begin{bmatrix} 3\\5 \end{bmatrix}, \begin{bmatrix} 3\\2 \end{bmatrix} \right\}$$
?

- 4. If **u** and **v** are both in span $\{\mathbf{w}_1, \mathbf{w}_2\}$ then is $5\mathbf{u} 2\mathbf{v}$ also in the span of \mathbf{w}_1 and \mathbf{w}_2 ?
- (a) Is it possible to find two vectors in \mathbb{R}^2 that don't span all of \mathbb{R}^2 ?
 - (b) Is is possible to find two vectors in \mathbb{R}^2 whose span does not include **0**?
 - (c) Is it possible to find two vectors in \mathbb{R}^3 whose span is all of \mathbb{R}^3 ?
- 6. Draw span $\left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}$ and span $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$.

Linear Independence

- 1. Show that if \mathbf{v}_1 and \mathbf{v}_2 are nonzero vectors in \mathbb{R}^n that are linearly dependent then $\mathbf{v}_1 = a\mathbf{v}_2$ for some real number a.
- 2. Show that if $\mathbf{0} \in \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ then $\mathbf{v}_1, \dots, \mathbf{v}_m$ are linearly dependent.
- 3. Are the following vectors linearly independent?

$$\begin{bmatrix} 3\\1\\-2 \end{bmatrix}, \begin{bmatrix} 5\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\3 \end{bmatrix}$$

4. If m > n, is it possible to find $\mathbf{v}_1, \dots, \mathbf{v}_m$ in \mathbb{R}^n that are linearly independent?