Complex Eigenvalues

For this section, let

$$A = \begin{bmatrix} 3/2 & -5/2 \\ 5/2 & -3/2 \end{bmatrix}$$

- 1. Find the eigenvalues of A and for each eigenvalue, find a corresponding eigenvector.
- 2. Find real numbers a and b such that A is similar to

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

3. Find r and θ such that A is similar to

$$r \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

4. Calculate and draw \mathbf{e}_1 , $A\mathbf{e}_1$, $A^2\mathbf{e}_1$, $A^3\mathbf{e}_1$, and $A^4\mathbf{e}_1$. How do the vectors you calculated and drew relate to the values for r and θ you found above?

Dot Product

1.

$$\mathbf{u} = \begin{bmatrix} 1\\2\\-3 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 0\\-6\\4 \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}$$

- (a) Find the lengths of \mathbf{u} and \mathbf{v} —i.e. find $||\mathbf{u}||$ and $||\mathbf{v}||$.
- (b) Find the distance between \mathbf{u} and \mathbf{v} —i.e. find dist (\mathbf{u}, \mathbf{v}) .
- (c) Find $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{w}$.
- (d) Find the cosine of the angle between \mathbf{u} and \mathbf{v} and the cosine of the angle between \mathbf{u} and \mathbf{w} .
- (e) Find a unit vector in the same direction as **u**.
- 2. If **u** and **v** are vectors in \mathbb{R}^n and the angle between them is $\pi/2$ radians (90°), what is $\mathbf{u} \cdot \mathbf{v}$?
- 3. If **u** is any vector in \mathbb{R}^n , what is $\mathbf{u} \cdot \mathbf{0}$?
- 4. Is any pair of vectors from problem (1) orthogonal?
- 5. Show that for all vectors \mathbf{v} in \mathbb{R}^n , $\mathbf{v} \cdot \mathbf{v} \ge 0$. When is it equal to 0?
- 6. Suppose W is a subspace of \mathbb{R}^n . Let H be the set of all vectors that are orthogonal to every vector in W. Formally,

$$H = \{ \mathbf{v} \in \mathbb{R}^n \mid \text{for all } \mathbf{u} \text{ in } \mathbb{R}^n, \, \mathbf{v} \cdot \mathbf{u} = 0 \}.$$

Is H a subspace of \mathbb{R}^n ?

7. What is the orthogonal complement of $\{0\}$? (Assume this means the zero vector in \mathbb{R}^n .)