After finishing the quiz, work on the first four questions.

Diagonalization

1. What is A^{100} ?

4.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- 2. If $A = PBP^{-1}$ then what is A^{100} ?
- 3. (a) Suppose \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of a matrix A with corresponding eigenvalues 5 and -3. What is $A^{100}\mathbf{v}_1$? What about $A^{100}\mathbf{v}_2$?

(b) If
$$\mathbf{v}_3 = 2\mathbf{v}_1 + 6\mathbf{v}_2$$
, what is $A^{100}\mathbf{v}_3$?

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix} \quad \mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$

- (a) What is $[\mathbf{e}_1]_{\mathcal{B}}$? What is $[\mathbf{e}_2]_{\mathcal{B}}$?
- (b) What are $A^{100}\mathbf{e}_1$ and $A^{100}\mathbf{e}_2$? (Hint: the vectors in \mathcal{B} are eigenvectors of A.)
- (c) What is A^{100} ? (Hint: Use the previous part.)
- 5. What is the maximum number of eigenvalues a 5×5 matrix can have?
- 6. Try to diagonalize the following matrices (not all of them are necessarily diagonalizable.)

(a)
$$\begin{bmatrix} 2 & 2 \\ 0 & 3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2 \\ -3 & -6 \end{bmatrix}$ (d) $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -3 \\ 0 & 0 & 2 \end{bmatrix}$

- 7. Find a matrix A such that $\begin{bmatrix} 3\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\1 \end{bmatrix}$ are eigenvectors of A with corresponding eigenvalues -5 and 1.
- 8. For each statement below, explain why it is true or provide a counterexample to show it is false.
 - (a) Every invertible matrix is diagonalizable.
 - (b) Every diagonalizable matrix is invertible.
 - (c) If A is a nonzero matrix and $A^2 = 0$ then A is not diagonalizable.
 - (d) Every 2×2 matrix with more than one eigenvalue is diagonalizable.
 - (e) Every upper triangular matrix is diagonalizable.