Review

1. Suppose a, b, and c are real numbers and that a is nonzero. For what values of d is the following matrix not invertible?

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Determinant

1. Find the determinant of both matrices below.

	1	2	3	4	7
$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$	1	1	0	5	0
0 -1 -6	4	5	0	2	2
1 0 3	0	0	0	15	0
	1	1	0	-1	0

- 2. Using the formula for the determinant, how many times do you have to multiply two numbers when finding the determinant of a 3×3 matrix when all its entries are not zero? What about a 5×5 matrix?
- 3. What is the determinant of the following matrix?

$$\begin{bmatrix} 1 & 5 & -7 & 8 \\ 0 & 2 & 10 & 9 \\ 0 & 0 & 3 & 21 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

4. What is the determinant of the following matrix?

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 3 & 4 \\ -1 & -2 & -3 & -5 \\ 5 & 10 & 20 & 20 \end{bmatrix}$$

- 5. (a) If A is an invertible matrix, what is $det(A^{-1})$?
 - (b) What is $det(5I_n)$?
 - (c) If A and B are similar matrices, can you say anything about det(A) and det(B)?
 - (d) True or false: det(A + B) = det(A) + det(B) for all $n \times n$ matrices A and B.
- 6. Challenge Problem: If $\alpha_1, \ldots, \alpha_n$ are real numbers, what is the determinant of the following matrix?

$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ & & \vdots \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \dots & \alpha_n^{n-1} \end{bmatrix}$$