Review

1. Is the following matrix invertible? Try to answer without doing any calculations.

$$\begin{bmatrix} 1 & 5 & 1 & 2 \\ 2 & 16 & 2 & 54 \\ 3 & -7 & 3 & 13 \\ 4 & 0 & 4 & -30 \end{bmatrix}$$

- 2. Suppose A is an $n \times m$ matrix and B is an $m \times p$ matrix.
 - (a) Show that $\dim(\operatorname{Null} B) \leq \dim(\operatorname{Null} AB)$.
 - (b) Show that $rank(AB) \leq rank(B)$. (Hint: how does the rank of a matrix relate to the dimension of its null space?)
 - (c) Show that $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$.
 - (d) Is it always true that $\dim(\operatorname{Null} B) = \dim(\operatorname{Null} AB)$?

Change of Basis

1. Let $\mathcal{B} = \{x+1, x^2+x, x^2+1\}$ and $\mathcal{C} = \{x^2+x+1, x^2, x\}$. Both are bases for \mathbb{P}_2 (you do not have to check this). Suppose that

$$[p]_{\mathcal{B}} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}.$$

What is $[p]_{\mathcal{C}}$?

- 2. With \mathcal{B} and \mathcal{C} as in the previous problem, find the change of basis matrix from \mathcal{B} to \mathcal{C} .
- 3. Suppose V is a vector space and $\mathcal{B} = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}, \mathcal{C} = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ are two different bases for V. If $\mathbf{w} = 3\mathbf{u}_1 \mathbf{u}_2 + \mathbf{u}_3$ and the change of basis matrix from \mathcal{B} to $\mathcal{C}, \underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$, is as given below, what is $[\mathbf{w}]_{\mathcal{C}}$?

$$P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 0 \\ 3 & 1 & 1 \end{bmatrix}$$

- 4. If \mathcal{B} , \mathcal{C} , and \mathcal{D} are bases for a vector space, and \mathbf{v} is a vector in that vector space, what is $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} \stackrel{-1}{[\mathbf{v}]_{\mathcal{C}}}$? What is $\underset{\mathcal{D} \leftarrow \mathcal{C} \subset \leftarrow \mathcal{B}}{P} [\mathbf{v}]_{\mathcal{B}}$?
- 5. Suppose $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that

$$T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = 3\begin{bmatrix}1\\1\end{bmatrix} \quad T\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}1\\1\end{bmatrix} + 2\begin{bmatrix}1\\-1\end{bmatrix}.$$

Find the matrix of T relative to the basis $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}.$

- 6. With T as in the previous question, find the standard matrix of T.
- 7. If A and B are similar matrices and C and D are similar matrices then are AC and BD similar matrices?