Matrix Algebra

1. Suppose that A and B are 2×2 matrices such that $A\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 5\end{array}\right]$ and $B\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}-2 \\ -3\end{array}\right]$. Find a solution to $(A+B) \mathbf{x}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.
2. Suppose that A and B are 2×2 matrices such that $A\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and B is invertible, with inverse $B^{-1}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Find a nontrivial solution to $(A B) \mathbf{x}=\mathbf{0}$.
3. What is I_{n}^{-1} ?
4. Find a 2×2 matrix A such that A is nonzero but $A^{2}=0$.
5. What is the determinant of the following matrix?
$\left[\begin{array}{cccccc}1 & 7 & 8 & 1 & 2 & 3 \\ 2 & -9 & 81 & 2 & 7 & 0 \\ 3 & 4 & 7 & 3 & 7 & -1 \\ 4 & 1 & 1 & 4 & 1 & 1 \\ 5 & 7 & -3 & 5 & 13 & 788 \\ 6 & -1 & -2 & 6 & -4 & -5\end{array}\right]$

Challenge problem: Find a formula for $\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]^{n}$.

