Matrix Algebra

- 1. Suppose that A and B are 2×2 matrices such that $A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$ and $B \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$. Find a solution to $(A+B)\mathbf{x} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.
- 2. Suppose that A and B are 2×2 matrices such that $A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and B is invertible, with inverse $B^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Find a nontrivial solution to $(AB)\mathbf{x} = \mathbf{0}$.
- 3. What is I_n^{-1} ?
- 4. Find a 2×2 matrix A such that A is nonzero but $A^2 = 0$.
- 5. What is the determinant of the following matrix?

Γ1	7	8	1	2	3 -
2	-9	81	2	7	0
3	4	7	3	7	-1
4	1	1	4	1	1
5	7	-3	5	13	788
6	-1	-2	6	-4	3 - 0 - 1 - 1 - 1 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5

Challenge problem: Find a formula for $\begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}^n$.