Functions

1. Suppose $f: \mathbb{N} \to \mathbb{N}$ is the function defined by f(n) = 2n and $g: \mathbb{N} \to \{0, 1\}$ is the function defined by

$$g(n) = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{ is odd.} \end{cases}$$

- (a) What is $(g \circ f)(5)$?
- (b) What is the range of $g \circ f$?
- (c) Is $g \circ f$ one-to-one? Onto?
- 2. Check whether each function is invertible. If it is invertible, find its inverse.
 - (a) The function $f: \{1, 2, 3\} \rightarrow \{4, 5, 6\}$ defined by

$$f(n) = \begin{cases} 5 & \text{if } n = 1\\ 6 & \text{if } n = 2\\ 4 & \text{if } n = 3. \end{cases}$$

- (b) The function $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = x^2$.
- (c) The function $h: \mathbb{R} \to \mathbb{R}$ defined by h(x) = 2x 3.

Linear transformations and Matrices

- 1. For each pair of linear transformations S and T below, find the standard matrix of $S \circ T$.
 - (a) $S \colon \mathbb{R}^2 \to \mathbb{R}^2$ is rotation by 90° counterclockwise and $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ is expansion by 3 in the horizontal direction.
 - (b) $S: \mathbb{R}^2 \to \mathbb{R}^2$ is expansion by 3 in the horizontal direction and $T: \mathbb{R}^2 \to \mathbb{R}^2$ is rotation by 90° counterclockwise.
 - (c) $S \colon \mathbb{R} \to \mathbb{R}^3$ defined by

$$S(x) = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

and $T: \mathbb{R}^3 \to \mathbb{R}$ defined by

$$T\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = x + y + z.$$

(d) $S: \mathbb{R}^2 \to \mathbb{R}^4$ has standard matrix

1	0]	
2	1	
3	0	
4	1	

and $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ is rotation by 90° counterclockwise.

2. For each item in the previous question, check whether $S \circ T$ is invertible. If it is, find the standard matrix of its inverse.