Functions

1. Suppose $f: \mathbb{N} \rightarrow \mathbb{N}$ is the function defined by $f(n)=2 n$ and $g: \mathbb{N} \rightarrow\{0,1\}$ is the function defined by

$$
g(n)= \begin{cases}0 & \text { if } n \text { is even } \\ 1 & \text { if } n \text { is odd }\end{cases}
$$

(a) What is $(g \circ f)(5)$?
(b) What is the range of $g \circ f$?
(c) Is $g \circ f$ one-to-one? Onto?
2. Check whether each function is invertible. If it is invertible, find its inverse.
(a) The function $f:\{1,2,3\} \rightarrow\{4,5,6\}$ defined by

$$
f(n)= \begin{cases}5 & \text { if } n=1 \\ 6 & \text { if } n=2 \\ 4 & \text { if } n=3\end{cases}
$$

(b) The function $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x)=x^{2}$.
(c) The function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(x)=2 x-3$.

Linear transformations and Matrices

1. For each pair of linear transformations S and T below, find the standard matrix of $S \circ T$.
(a) $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is rotation by 90° counterclockwise and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is expansion by 3 in the horizontal direction.
(b) $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is expansion by 3 in the horizontal direction and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is rotation by 90° counterclockwise.
(c) $S: \mathbb{R} \rightarrow \mathbb{R}^{3}$ defined by

$$
S(x)=\left[\begin{array}{l}
x \\
x \\
x
\end{array}\right]
$$

and $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=x+y+z .
$$

(d) $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ has standard matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
2 & 1 \\
3 & 0 \\
4 & 1
\end{array}\right]
$$

and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is rotation by 90° counterclockwise.
2. For each item in the previous question, check whether $S \circ T$ is invertible. If it is, find the standard matrix of its inverse.

