Functions

- 1. For each function below, state whether it is one-to-one. If it is not one-to-one then find two elements of the domain which are mapped to the same element of the codomain.
 - (a) $f: \mathbb{N} \to \mathbb{N}$ defined by f(n) = 2n.
 - (b) $g: \mathbb{N} \to \{0, 1\}$ defined by

$$g(n) = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{ is odd.} \end{cases}$$

(c) $h: \{1, 2, 3\} \rightarrow \{4, 5, 6\}$ defined by

$$h(n) = \begin{cases} 5 & \text{if } n = 1\\ 6 & \text{if } n = 2\\ 5 & \text{if } n = 3. \end{cases}$$

(d) $k \colon \mathbb{Z} \to \mathbb{R}^2$ defined by

$$k(n) = \begin{bmatrix} n \\ -n \end{bmatrix}.$$

- (e) $j: \{1, 2, 3, \ldots\} \to \mathbb{N}$ defined by $j(n) = \text{the } n^{\text{th}} \text{ digit of } \pi$.
- 2. For each function in the previous question, state whether it is onto. If it is not onto, find an element of the codomain that is not in the range.
- 3. For each item below, either give an example or explain why no example exists.
 - (a) A linear transformation that is one-to-one and onto.
 - (b) A linear transformation that is one-to-one but not onto.
 - (c) A linear transformation that is onto but not one-to-one.
 - (d) A linear transformation that is neither one-to-one nor onto.
- 4. Let $f : \mathbb{R} \to \mathbb{R}^3$ be the function defined by

$$f(x) = \begin{bmatrix} x \\ x \\ x \end{bmatrix}$$

and let $g \colon \mathbb{R}^3 \to \mathbb{R}$ be the function defined by

$$g\left(\begin{bmatrix}x\\y\\z\end{bmatrix}\right) = x + y + z.$$

- (a) What is $g \circ f$?
- (b) What is $f \circ g$?
- (c) Both f and g are linear transformations and therefore so are $f \circ g$ and $g \circ f$. Find the standard matrix of each.