Linear Transformations

1. Suppose $T \colon \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation such that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}5\\3\\-1\end{bmatrix}$$
 and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}2\\1\\1\end{bmatrix}$.

- (a) What is $T\left(\begin{bmatrix}2\\3\end{bmatrix}\right)$?
- (b) What is the standard matrix of T (i.e. $[T]_{std}$)?
- 2. Write the standard matrix for each of the following linear transformations from $\mathbb{R}^2 \to \mathbb{R}^2$.
 - (a) Reflection across the line $x_2 = x_1$.
 - (b) Rotation by 90° followed by expansion by 3 in the horizontal direction.
 - (c) Everything is sent to **0**.
- 3. For each matrix below, make a drawing for the function from $\mathbb{R}^2 \to \mathbb{R}^2$ that it defines.

(a)
$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (c) $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ (e) $\begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix}$

(b)
$$\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$
 (d) $\begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix}$ (f) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

4. Is the function $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by

$$T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}xy\\y\\x\end{bmatrix}$$

a linear transformation?