## Linear Transformations

1. Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation such that

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
5 \\
3 \\
-1
\end{array}\right] \text { and } T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]
$$

(a) What is $T\left(\left[\begin{array}{l}2 \\ 3\end{array}\right]\right)$ ?
(b) What is the standard matrix of $T$ (i.e. $[T]_{\mathrm{std}}$ )?
2. Write the standard matrix for each of the following linear transformations from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
(a) Reflection across the line $x_{2}=x_{1}$.
(b) Rotation by $90^{\circ}$ followed by expansion by 3 in the horizontal direction.
(c) Everything is sent to $\mathbf{0}$.
3. For each matrix below, make a drawing for the function from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that it defines.
(a) $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
(c)
$\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$
(e)
$\left[\begin{array}{cc}0 & -2 \\ 1 & 0\end{array}\right]$
(b)

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]
$$

(d) $\left[\begin{array}{cc}0 & -1 \\ 2 & 0\end{array}\right]$
(f)
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
4. Is the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x y \\
y \\
x
\end{array}\right]
$$

a linear transformation?

