Matrices

1. For each of the following, either calculate the product of the matrix and the vector or state that the product is not defined.
(a) $\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 0 & 1\end{array}\right]\left[\begin{array}{c}1 \\ -2 \\ 4\end{array}\right]$
(c)
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]\left[\begin{array}{c}1 \\ -2 \\ 4\end{array}\right]$
(e)
$\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
(d)

$$
\left[\begin{array}{llll}
0 & 7 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}\right]
$$

(f)
$\left[\begin{array}{lll}1 & 2 & 3 \\ 6 & 5 & 4 \\ 7 & 8 & 9\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

Linear Independence

1. Prove that each of the following lists of vectors is linearly dependent.
(a)

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{c}
17 \\
-3
\end{array}\right]
$$

(c) $\mathbf{u}, \mathbf{v}, 3 \mathbf{u}-4 \mathbf{v}$ where \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{4}.
2. For each list of vectors below, say whether it is linearly dependent or linearly independent.
(a)

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

(b) $\quad\left[\begin{array}{l}2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{c}3 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{l}5 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$
3. Give an example of:
(a) A list of vectors in \mathbb{R}^{2} which are linearly dependent and span all of \mathbb{R}^{2}.
(b) A list of vectors in \mathbb{R}^{3} which are linearly independent but do not span all of \mathbb{R}^{3}.

