Matrices

1. For each of the following, either calculate the product of the matrix and the vector or state that the product is not defined.

Linear Independence

1. Prove that each of the following lists of vectors is linearly dependent.

(a)
$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\6\\9 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\\end{bmatrix}, \begin{bmatrix} 17\\-3 \end{bmatrix}$ (c) $\mathbf{u}, \mathbf{v}, 3\mathbf{u} - 4\mathbf{v}$ where \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^4 .

2. For each list of vectors below, say whether it is linearly dependent or linearly independent.

(a)	[1]	[0]	[0]	(b)	$\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix}$	(c)	[3]	[5]	$\begin{bmatrix} 2 \end{bmatrix}$
	0,	1 ,	0		$\begin{bmatrix} 0 \end{bmatrix}$, $\begin{bmatrix} 1 \end{bmatrix}$		1 ,	$\left 0 \right $,	-1
	0	0	[1]				$\lfloor -2 \rfloor$	$\lfloor 1 \rfloor$	3

- 3. Give an example of:
 - (a) A list of vectors in \mathbb{R}^2 which are linearly dependent and span all of \mathbb{R}^2 .
 - (b) A list of vectors in \mathbb{R}^3 which are linearly independent but do not span all of \mathbb{R}^3 .