Systems of First Order Linear ODEs

1. Check if each function given below is a solution to $\mathbf{y}^{\prime}(t)=A(t)$.

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 1 \\
4 & -4 & 5
\end{array}\right]
$$

(a)

$$
\mathbf{y}_{1}(t)=\left[\begin{array}{c}
-e^{3 t} \\
e^{3 t} \\
4 e^{3 t}
\end{array}\right]
$$

(b)
$\mathbf{y}_{2}(t)=\left[\begin{array}{c}\sin (t) \\ 2 \\ 3 e^{5 t}\end{array}\right]$
2. Suppose $\mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector of the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with eigenvalue 5. Show that $\mathbf{y}(t)=\left[\begin{array}{c}e^{5 t} \\ 2 e^{5 t}\end{array}\right]$ is a solution to the differential equation $\mathbf{y}^{\prime}(t)=A \mathbf{y}(t)$.
3. Find the general solution to the following ODE.

$$
\mathbf{y}^{\prime}(t)=\left[\begin{array}{cc}
1 & 2 \\
2 & -2
\end{array}\right] \mathbf{y}(t)
$$

4. Find the solution to the following initial value problem

$$
\begin{aligned}
& \mathbf{y}^{\prime}(t)=\left[\begin{array}{cc}
1 & 2 \\
2 & -2
\end{array}\right] \mathbf{y}(t) \\
& \mathbf{y}(0)=\left[\begin{array}{l}
5 \\
0
\end{array}\right]
\end{aligned}
$$

5. What is the long term behavior of the solution you found in the previous problem? I.e. when t is large, what does $\mathbf{y}(t)$ look like-what is its norm and approximately what direction is it pointing in?
