Singular Value Decomposition

1. Find the full and reduced singular value decomposition of the following matrix.

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Hint: It's easier to first find the SVD of A^{T}.
2. Find three different 2×5 matrices whose nonzero singular values are 2 and 3 . It's okay to express these matrices as produces of other matrices.

Linear Ordinary Differential Equations

1. Which of the following functions are solutions to the differential equation $y^{\prime \prime}-y=2-t^{2}$?
(a) $f(t)=t^{2}$
(c) $h(t)=\sin (t)+t^{2}$
(b) $g(t)=e^{t}$
(d) $k(t)=2 e^{t}+t^{2}$
2. Which of the functions in the previous problem are solutions to the initial value problem $y^{\prime \prime}-y=2-t^{2}, y(0)=1, y^{\prime}(0)=1 ?$
3. Show that if f and g are both solutions to the differential equation $y^{\prime \prime \prime}-5 y^{\prime \prime}+17 y^{\prime}-3 y=0$ then so is $5 f+3 g$.
