Singular Value Decomposition

1. Find the full and reduced singular value decomposition of the following matrix.

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Hint: It's easier to first find the SVD of A^T .

2. Find three different 2×5 matrices whose nonzero singular values are 2 and 3. It's okay to express these matrices as produces of other matrices.

Linear Ordinary Differential Equations

- 1. Which of the following functions are solutions to the differential equation $y'' y = 2 t^2$?
 - (a) $f(t) = t^2$ (b) $g(t) = e^t$ (c) $h(t) = \sin(t) + t^2$ (d) $k(t) = 2e^t + t^2$
- 2. Which of the functions in the previous problem are solutions to the initial value problem $y'' y = 2 t^2$, y(0) = 1, y'(0) = 1?
- 3. Show that if f and g are both solutions to the differential equation y''' 5y'' + 17y' 3y = 0then so is 5f + 3g.