Gram-Schmidt Algorithm

1. Find an orthogonal basis for the column space of the following matrix.

Γ1	3	10
2	5	4
3	5	8
[1	2	3

2. What happens if you run the Gram-Schmidt algorithm with a set of vectors that is not linearly independent?

Least Squares

1. Suppose the least squares solution to $A\mathbf{x} = \mathbf{b}$ is \mathbf{v} . What is $\operatorname{proj}_{\operatorname{Col}(A)}(\mathbf{b})$?

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 3 & 2 \\ 1 & 1 & 2 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

2. Find a least squares solution to $A\mathbf{x} = \mathbf{b}$.

$$A = \begin{bmatrix} 1 & 0\\ -1 & 3\\ 2 & 1 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 5\\ 2\\ 1 \end{bmatrix}$$

Orthogonal Complement

- 1. What is $\{\mathbf{0}\}^{\perp}$?
- 2. What is $(\mathbb{R}^n)^{\perp}$?
- 3. If W is a subspace of \mathbb{R}^n , what is $W \cap W^{\perp}$?
- 4. If W is a subspace of \mathbb{R}^n and $\mathbf{x} \in W$, what are $\operatorname{proj}_W(\mathbf{x})$ and $\operatorname{proj}_{W^{\perp}}(\mathbf{x})$?
- 5. Show that $\operatorname{Col}(A)^{\perp} = \operatorname{Null}(A^T)$.

Orthogonal Matrices

- 1. If U is an orthogonal matrix, what is $U^T U$?
- 2. If U is a square orthogonal matrix, what is UU^T ? What if U is not square?
- 3. If U is an orthogonal $n \times m$ matrix and $\mathbf{x} \in \mathbb{R}^m$, show that $||U\mathbf{x}|| = ||\mathbf{x}||$.