Gram-Schmidt Algorithm

1. Find an orthogonal basis for the column space of the following matrix.

$$
\left[\begin{array}{ccc}
1 & 3 & 10 \\
2 & 5 & 4 \\
3 & 5 & 8 \\
1 & 2 & 3
\end{array}\right]
$$

2. What happens if you run the Gram-Schmidt algorithm with a set of vectors that is not linearly independent?

Least Squares

1. Suppose the least squares solution to $A \mathbf{x}=\mathbf{b}$ is \mathbf{v}. What is $\operatorname{proj}_{\operatorname{Col}(A)}(\mathbf{b})$?

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 3 & 2 \\
1 & 1 & 2
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

2. Find a least squares solution to $A \mathbf{x}=\mathbf{b}$.

$$
A=\left[\begin{array}{cc}
1 & 0 \\
-1 & 3 \\
2 & 1
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
5 \\
2 \\
1
\end{array}\right]
$$

Orthogonal Complement

1. What is $\{\mathbf{0}\}^{\perp}$?
2. What is $\left(\mathbb{R}^{n}\right)^{\perp}$?
3. If W is a subspace of \mathbb{R}^{n}, what is $W \cap W^{\perp}$?
4. If W is a subspace of \mathbb{R}^{n} and $\mathbf{x} \in W$, what are $\operatorname{proj}_{W}(\mathbf{x})$ and $\operatorname{proj}_{W^{\perp}}(\mathbf{x})$?
5. Show that $\operatorname{Col}(A)^{\perp}=\operatorname{Null}\left(A^{T}\right)$.

Orthogonal Matrices

1. If U is an orthogonal matrix, what is $U^{T} U$?
2. If U is a square orthogonal matrix, what is $U U^{T}$? What if U is not square?
3. If U is an orthogonal $n \times m$ matrix and $\mathbf{x} \in \mathbb{R}^{m}$, show that $\|U \mathbf{x}\|=\|\mathbf{x}\|$.
