Orthogonal Basis

1. Let $W = \text{span}\{\mathbf{v}_1, \mathbf{v}_2\}$ and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. Find the coordinate vector for **u** in the basis \mathcal{B} of the subspace W.

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 1\\2\\-3 \end{bmatrix} \quad \mathbf{u} = \begin{bmatrix} 1\\0\\5 \end{bmatrix}$$

2. Solve the following system of linear equations without doing any row reduction. (Hint: the columns of the coefficient matrix are orthogonal to each other.)

Orthogonal Projections and Best Approximation

1. Let $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{y} be the vectors in \mathbb{R}^3 given below and let $W = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2\}$.

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$

- (a) Find the vector in W which is closest to \mathbf{y} .
- (b) Find the distance from \mathbf{y} to W.
- (c) Find a vector $\hat{\mathbf{y}}$ in W and a vector \mathbf{z} orthogonal to W such that $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$.