Orthogonal Basis

1. Let $W=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. Find the coordinate vector for \mathbf{u} in the basis \mathcal{B} of the subspace W.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{l}
1 \\
0 \\
5
\end{array}\right]
$$

2. Solve the following system of linear equations without doing any row reduction. (Hint: the columns of the coefficient matrix are orthogonal to each other.)

$$
\begin{aligned}
x_{1}+6 x_{2}+2 x_{3} & =23 \\
2 x_{1}-x_{2}+x_{3} & =1 \\
3 x_{1}-16 x_{3} & =-29 \\
4 x_{1}-x_{2}+11 x_{3} & =23
\end{aligned}
$$

Orthogonal Projections and Best Approximation

1. Let $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{y} be the vectors in \mathbb{R}^{3} given below and let $W=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

(a) Find the vector in W which is closest to \mathbf{y}.
(b) Find the distance from \mathbf{y} to W.
(c) Find a vector $\widehat{\mathbf{y}}$ in W and a vector \mathbf{z} orthogonal to W such that $\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{z}$.

