Eigenvectors of linear transformations on abstract vector spaces The definitions of "eigenvectors" and "eigenvalues" still make sense for a linear transformation $T: V \rightarrow V$ on any vector space V (not just R") Definition If V is a vector space and $T: V \rightarrow V$ is a linear transformation then an eigenvector of T is a nonzero vector $\vec{v} \in V$ such that $T(\vec{v}) = \lambda \vec{v}$ for some scalar λ (called the eigenvalue)

Complex eigenvalues
Everything we've dowe in this class so far still works if we use
complex numbers instead of real numbers.
Why care? Some matrices with only real numbers can
only be diagonalized it we are allowed to use complex
numbers.
Example: Rotation by 90° counterclockwise: [° -1]
No eigenvectors because it rotates every vector in R²,
so it does not send any vector to a multiple of itself.
Characteristic polynomial:
$$(-t)^2 + 1 = t^2 + 1 < no real roots$$

But if we can use complex numbers then:
 $[° -0] = [i -1][o -1][i -1]^{-1}$
Slogan: Complex eigenvalues = rotation

D Diagonalize
$$A = \begin{bmatrix} 3 & 4 \\ -2 & -1 \end{bmatrix}$$

() Eigenvalues of $A : [+2i], [-2i]$
 $X_A(t) = det \begin{bmatrix} 3-t & 4 \\ -2 & -1-t \end{bmatrix} = (3-t)(-1-t) - 4(-2)$
 $= -3+t-3t+t^2 + 8$
 $= t^2 - 2t + 5$
 $roots : \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 5}}{2} = \frac{2 \pm \sqrt{4} - 20}{2}$
 $= 2 \pm \sqrt{-16}$
 $= 1 \pm 2i$

Basis for E_{1+2i}: Null (A - (1+2i) T₂) = span {
$$\begin{bmatrix} -1-i\\ 1 \end{bmatrix}$$
 }
$$\begin{bmatrix} 3 - (1+2i) & 4\\ -2 & -1-(1+2i) \end{bmatrix} = \begin{bmatrix} 2-2i & 4\\ -2 & -2-2i \end{bmatrix} \stackrel{R_1 = \frac{1}{2-2i} R_1 \\ -2 & -2-2i \end{bmatrix}$$

$$\begin{pmatrix} \frac{1}{2-2i} = \frac{2+2i}{(2+2i)(2+2i)} = \frac{2+2i}{4+4} = \frac{1+i}{4} \end{pmatrix}$$

$$R_2 = R_2 + 2R_1 \begin{bmatrix} 1 & 1+i\\ 0 & 0 \end{bmatrix} \stackrel{X_1 = (-1-i) X_2}{X_2 \text{ free}}$$
Check: $\begin{bmatrix} 3 & 4\\ -2 & -1 \end{bmatrix} \begin{bmatrix} -1-i\\ 1 \end{bmatrix} = \begin{bmatrix} -3-3i + 4\\ 2+2i - 1 \end{bmatrix} = \begin{bmatrix} 1-3i\\ 1+2i \end{bmatrix}$

$$= (1+2i) \begin{bmatrix} -1-i\\ 1 \end{bmatrix}$$
Warning: Any scalar multiple of $\begin{bmatrix} -1-i\\ 1 \end{bmatrix}$ is also
an eigenvector, where "scalar" means "complex number."
But it is not always easy to immediately tell that
one vector is a complex number multiple of another."

Basis for
$$E_{1-2i}$$
: Null $(A - (1 - 2i)T_2) = spon \left\{ \begin{bmatrix} -1 + i \\ i \end{bmatrix} \right\}$
Trick: Since A's entries are all real numbers,
eigenvalues & eigenvectors come in conjugate pairs.
i.e. $1+2i$ is an eigenvalue, so $1+2i = 1-2i$ is
as well, $\begin{bmatrix} -1 - i \\ i \end{bmatrix}$ is an eigenvector with eigenvalue
 $1+2i$ so $\begin{bmatrix} -1 - i \\ i \end{bmatrix} = \begin{bmatrix} -1 + i \\ i \end{bmatrix}$ is an eigenvector
with eigenvalue $\overline{1+2i} = 1-2i$
 $A = \begin{bmatrix} -1 - i \\ i \end{bmatrix} = \begin{bmatrix} -1 + i \\ i \end{bmatrix} = \begin{bmatrix} -1 - i \\ i \end{bmatrix} = \begin{bmatrix} -1 - i \\ i \end{bmatrix} = \begin{bmatrix} -1 + i \\ i \end{bmatrix} = \begin{bmatrix} -1 - i \\ i \end{bmatrix} = \begin{bmatrix} -$

If A is a 2×2 real matrix with complex
eigenvalues then A is similar to a matrix of
the form
$$r [cos \theta - sin \theta]$$

in other words, in some basis, A just looks like a
scaling combined with a rotation.
If the complex eigenvalues are atbit and a-bit
then r and θ are such that
 $a+bi = r(cos \theta + isin \theta) = re^{i\theta}$
Geveny complex number
can be written in
this form