Eigenvectors of linear transformations on abstract vector spaces
The definitions of "eigenvectors" and "eigenvalues" still make sense for a linear transformation $T: V \rightarrow V$ on any vector space V (not just \mathbb{R}^{n})
Definition If V is a vector space and $T: V \rightarrow V$ is a linear transformation then an eigenvector of τ is a nonzero vector $\vec{v} \in V$ such that $T(\vec{v})=\lambda \vec{v}$ for some scalar λ (called the eigenvalue)
(i) Let $C^{\infty}(\mathbb{R})$ denote the set of infinitely differentiable functions $\mathbb{R} \rightarrow \mathbb{R}$. Let $T: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ be the linear transformation defined by $\tau(f)=\frac{d f}{d x}-2 f$. which of the following are eigenvectors of T ?
a) $\sin (x)$ Not an eigenvector

$$
\tau(\sin (x))=\cos (x)-2 \sin (x) \quad \sin (0)=0 \text { so any scalar }
$$

$$
\begin{aligned}
& \tau(\sin (x))=\cos (x) \text { of } \sin (x) \text { must be } 0 \text { at } 0 \text {. But } \cos (0)-2 \sin (0)=1 \\
& \text { multiple }
\end{aligned}
$$

$\operatorname{mult}_{0} \cos (x)-2 \sin (x)$ is not a scalar multiple of $\sin (x)$
b) e^{x}

$$
T\left(e^{x}\right)=e^{x}-2 e^{x}=-e^{x}
$$

Eigenvector with eigenvalue -1
c) $5 x+2$ Not an eigenvector

This is not a scalar multiple of $5 x+2$. To

$$
\begin{aligned}
& 5 x+2 \text { Not an eigenvector } \\
& T(5 x+2)=5-2(5 x+2)=-10 x+1
\end{aligned}
$$

see why, evaluate both at $-2 / 5$
d) $e^{2 x}$ Eigenvector with eigenvalue 0

$$
T\left(e^{2 x}\right)=2 e^{2 x}-2 e^{2 x}=0
$$

Complex eigenvalues
Everything we've done in this class so far still works if we use complex numbers instead of real numbers.
why care? Some matrices with only real numbers can only be diagonalized it we are allowed to use complex numbers.
Example: Rotation by 90° counterclockwise: $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
No eigenvectors because it rotates every vector in \mathbb{R}^{2}, so it does not send any vector to a multiple of itself. Characteristic polynomial: $(-t)^{2}+1=t^{2}+1 \leftarrow$ no real roots But if we can use complex numbers then:

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
i & -i \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]\left[\begin{array}{cc}
i & -i \\
1 & 1
\end{array}\right]^{-1}
$$

Slogan: Complex eigenvalues $=$ rotation
(1) Diagonalize $\quad A=\left[\begin{array}{cc}3 & 4 \\ -2 & -1\end{array}\right]$
(1) Eigenvalues of $A: 1+2 i, 1-2 i$

$$
\begin{aligned}
x_{A}(t)=\operatorname{det}\left[\begin{array}{cc}
3-t & 4 \\
-2 & -1-t
\end{array}\right] & =(3-t)(-1-t)-4(-2) \\
& =-3+t-3 t+t^{2}+8 \\
& =t^{2}-2 t+5
\end{aligned}
$$

roots: $\quad \frac{2 \pm \sqrt{(-2)^{2}-4 \cdot 5}}{2}=\frac{2 \pm \sqrt{4-20}}{2}$

$$
\begin{aligned}
& =\frac{2 \pm \sqrt{-16}}{2} \\
& =\frac{2 \pm 4 i}{2} \\
& =1 \pm 2 i
\end{aligned}
$$

(2) Basis for $E_{1+2 i}:$ Null $\left(A-(1+2 i) I_{2}\right)=\operatorname{span}\left\{\left[\begin{array}{c}-1-i \\ 1\end{array}\right]\right\}$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
3-(1+2 i) & 4 \\
-2 & -1-(1+2 i)
\end{array}\right]=\left[\begin{array}{cc}
2-2 i & 4 \\
-2 & -2-2 i
\end{array}\right] \xrightarrow{R_{1}=\frac{1}{2-2 i} R_{1}}\left[\begin{array}{cc}
1 & 1+i \\
-2 & -2-2 i
\end{array}\right]} \\
& \left(\frac{1}{2-2 i}=\frac{2+2 i}{(2+2 i)(2-2 i)}=\frac{2+2 i}{4+4}=\frac{1+i}{4}\right) \\
& R_{2}=R_{2}+2 R_{1}
\end{aligned}\left[\begin{array}{cc}
1 & 1+i \\
0 & 0
\end{array}\right] \quad \begin{aligned}
& x_{1}=(-1-i) x_{2} \\
& x_{2} \text { free }
\end{aligned}
$$

Check: $\left[\begin{array}{cc}3 & 4 \\ -2 & -1\end{array}\right]\left[\begin{array}{c}-1-i \\ 1\end{array}\right]=\left[\begin{array}{c}-3-3 i+4 \\ 2+2 i-1\end{array}\right]=\left[\begin{array}{c}1-3 i \\ 1+2 i\end{array}\right]$

$$
=(1+2 i)\left[\begin{array}{c}
-1-i \\
1
\end{array}\right]
$$

Warning: Any scalar multiple of $\left[\begin{array}{c}-1-i \\ 1\end{array}\right]$ is also an eigenvector, where "scalar" means "complex number." But it is not always easy to immediately tell that one vector is a complex number multiple of anther

Basis for $E_{1-2 i} \operatorname{Null}\left(A-(1-2 i) I_{2}\right)=\operatorname{span}\left\{\left[\begin{array}{c}-1+i \\ 1\end{array}\right]\right\}$ Trick: Since A^{\prime} 's entries are all real numbers, eigenvalues \& eigenvectors conve in conjugate pairs. i.e. $1+2 i$ is an eigenvalue, so $\overline{1+2 i}=1-2 i$ is as well, $\left[\begin{array}{c}-1-i \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $1+2 i$ so $\overline{\left[\begin{array}{c}-1-i \\ 1\end{array}\right]}=\left[\begin{array}{c}-1+i \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $\overline{1+2 i}=1-2 i$
(3) $A=\left[\begin{array}{cc}-1-i & -1+i \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}1+2 i & 0 \\ 0 & 1-2 i\end{array}\right]\left[\begin{array}{cc}-1-i & -1+i \\ 1 & 1\end{array}\right]^{-1}$

If A is a 2×2 real matrix with complex eigenvalues then A is similar to a matrix of the form

$$
r\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

in other words, in some basis, A just looks like a scaling combined with a rotation.
If the complex eigenvalues are $a+b i$ and $a-b i$ then r and θ are such that

$$
a+b i=r(\cos \theta+i \sin \theta)=r e^{i \theta}
$$

G every complex number can be written in this form

