Similar Matrices Suppose A and B are $n \times n$ matrices. A and B are similar if:
Abstract definition: There is a vector space V, a linear transformation $T: V \rightarrow V$ and bases B_{1}, B_{2} for V such that $A=B_{1}[T]_{B_{1}}$ and $B={ }_{B_{2}}[T]_{B_{2}}$
Concrete definition: There is an invertible matrix P such that $A=(P) B P^{-1}$
think of P as $\underset{B_{1} \leftarrow B_{2}}{P}$
(1) Suppose A and B are similar matrices and $\operatorname{det}(A)=5$. what can you say about $\operatorname{det}(B)$?

There is some invertible P sit. $A=P B P^{-1}$

$$
\begin{aligned}
S=\operatorname{det}(A)=\operatorname{det}\left(P B P^{-1}\right) & =\operatorname{det}(P) \operatorname{det}(B) \operatorname{det}\left(P^{-1}\right) \\
& =\operatorname{det}(P) \operatorname{det}(B) \frac{1}{\operatorname{det}(P)} \\
& =\operatorname{det}(B) \Rightarrow \operatorname{det}(B)=5
\end{aligned}
$$

(2) Suppose A is similar to $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. What can you say about A ? $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Why? There is some invertible P sit. $A=P\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] P^{-1}$

$$
A=P\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] P^{-1}=P\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

The all-zeros matrix tomes any other matrix is just the all-zeros matrix.
(3) Suppose A is similar to $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. What can you say about A? $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Why? The identity matrix times any matrix just gives that matrix. So we have

$$
A=P\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] P^{-1}=P P^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Diagonalization $A_{n}, n \times n$ matrix A is diagonalizable if it is similar to a diagonal matrix.
$=$ There is a basis for \mathbb{R}^{n} consisting of eigenvectors for A
Algorithm to diagonalize a matrix A :
(1) Find the eigenvalues of A as roots of the characteristic polynomial, $X_{A}(t)$.
(2) For each eigenvalue, λ, find a basis for the eigenspace associated to λ (i.e. a basis for $\left.\operatorname{Null}\left(A-\lambda I_{n}\right)\right)$
(3) If the dimensions of the eigenspaces sum to n then A is diagonalizable. Otherwise it's not.
(1) Try to diagonalize:
a) $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right] \quad A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{-1}$
(1)

$$
\begin{aligned}
x_{A}(t)=\operatorname{det}\left(A-t I_{2}\right) & =\operatorname{det}\left(\left[\begin{array}{ccc}
2-t & 1 \\
0 & 3-t
\end{array}\right]\right) \\
& =(2-t)(3-t)
\end{aligned}
$$

Eigenvalues: 2,3
(2) Basis for $E_{2}: \operatorname{Null}\left(A-2 I_{2}\right)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$

$$
\left.A-2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] \xrightarrow{R_{2}=R_{2}-R_{1}}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \begin{array}{l}
x_{1} \text { free } \\
x_{2}=0
\end{array}\right\} x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Basis for $E_{3}: \operatorname{Null}\left(A-3 I_{2}\right)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$

$$
\left.A-3\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right] \xrightarrow{R_{1}=-R_{1}}\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] \begin{array}{l}
\text { Basis for }
\end{array} \begin{array}{l}
x_{1}=x_{2} \\
x_{2} \text { free }
\end{array}\right\} \quad x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

(3) $\operatorname{dim}\left(E_{2}\right)+\operatorname{dim}\left(E_{3}\right)=2$ So A is diagonalízable
b) $B=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$
(1) Eigenvalues of $B: 2$

$$
X_{B}(t)=\operatorname{det}\left[\begin{array}{cc}
2-t & 1 \\
0 & 2-t
\end{array}\right]=(2-t)^{2}
$$

(2) Basis for $E_{2}: \operatorname{Null}\left(B-2 I_{2}\right)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$

$$
\left.B-2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad \begin{array}{l}
x_{1} \text { free } \\
x_{2}=0
\end{array}\right\} \quad x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

(3) $\operatorname{dim}\left(E_{2}\right)=1$ so B is not diagonalizable.
(2) Find a 2×2 matrix A such that:

- $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ is an eigenvector of A with eigenvalue 5
- $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector of A with eigenvalue -1

Let $B=\left\{\left[\begin{array}{l}3 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $T(\vec{x})=A \vec{x}$. Note that B is a basis for \mathbb{R}^{2} and the matrix for T relative to the basis B is $\left[\begin{array}{cc}s & 0 \\ 0 & -1\end{array}\right]$. Since $[T]_{\text {std }}=A$, this tells us that
Check:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
8 & -9 \\
3 & -4
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
24.9 \\
0-4
\end{array}\right]=\left[\begin{array}{l}
55 \\
5
\end{array}\right]=5\left[\begin{array}{l}
3 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
8-9 \\
3
\end{array}\right]\left[\begin{array}{l}
1 \\
\hline
\end{array}\right]=\left[\begin{array}{c}
8-9 \\
3-4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1
\end{array}\right]=-1[1]}
\end{aligned}
$$

$$
\begin{aligned}
A & ={ }_{\text {sHh }}^{P}\left[\begin{array}{cc}
s & 0 \\
0 & -1
\end{array}\right]_{B \& s+d} P={ }_{s M \in B} P^{P}\left[\begin{array}{cc}
5 & 0 \\
0 & -1
\end{array}\right]_{s k} P^{-1} P^{-1} \\
& =\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
5 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
5 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 3 / 2
\end{array}\right] \\
& \left.=\left[\begin{array}{cc}
15 & -1 \\
5 & -1
\end{array}\right] \begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 3 / 2
\end{array}\right]=\left[\begin{array}{cc}
8 & -9 \\
3 & -4
\end{array}\right]
\end{aligned}
$$

Why Diagonalize?
(1) $A=\left[\begin{array}{cc}3 & 0 \\ 0 & -1\end{array}\right] \quad B=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] A\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]^{-1}$
a) $A^{100}=\left[\begin{array}{cc}3^{100} & 0 \\ 0 & (-1)^{100}\end{array}\right]=\left[\begin{array}{cc}3^{100} & 0 \\ 0 & 1\end{array}\right]$

$$
A=\left[\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right]
$$

$$
A^{2}=\left[\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
9 & 0 \\
0 & 1
\end{array}\right]
$$

$A^{3}=A^{2} \cdot A=\left[\begin{array}{ll}9 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}3 & 0 \\ 0 & -1\end{array}\right]=\left[\begin{array}{cc}27 & 0 \\ 0 & -1\end{array}\right]$

$$
A^{n}=\left[\begin{array}{cc}
3^{n} & 0 \\
0 & (-1)^{n}
\end{array}\right]
$$

b)

$$
\begin{aligned}
B^{100} & =\frac{1}{2}\left[\begin{array}{cc}
3^{100}+1 & 3^{100}-1 \\
3^{100}-1 & 3^{100}+1
\end{array}\right] \\
B_{2} I_{2} 00 & =\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] A\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & -1
\end{array}\right] A\left[\begin{array}{cc}
1 \\
1 & 1
\end{array}\right] \cdots A_{2} \\
& =\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] A^{100}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
3^{100} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
3^{100} & 1 \\
3^{100} & -1
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{2}\left(3^{100}+1\right) & \frac{1}{2}\left(3^{100}-1\right) \\
\frac{1}{2}\left(3^{100}-1\right) & \frac{1}{2}\left(3^{100}+1\right)
\end{array}\right]
\end{aligned}
$$

(2) $\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]^{2021}=\left[\begin{array}{cc}2^{2021} & 3^{2021}-2^{2021} \\ 0 & 3^{2021}\end{array}\right]$

In a previous problem, we found:

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{-1}
$$

So

$$
\begin{aligned}
{\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right]^{2021} } & =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]^{2021}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2^{2021} & 0 \\
0 & 3^{2021}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
2^{2021} & 3^{2021} \\
0 & 3^{2021}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
2^{2021} & 3^{2021}-2^{2021} \\
0 & 3^{2021}
\end{array}\right]
\end{aligned}
$$

Challenge: Find $\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]^{2021}$

Extra Problems
(1) What is the maximum number of eigenvalues a $S \times 5$ matrix can have? Answer: S
Each eigenvalue has an eigenvector and eigenvectors with different eigenvalues are always linearly independent. Since there can be at most s linearly independent vectors in \mathbb{R}^{5}, a 5×5 matrix can have at most s eigenvalues. Also, there are 5×5 matrices which have this many eigenvalues.
E.g. $\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 5\end{array}\right]$

What is the minimum number a 5×5 matrix can have and still be diagonalizable? Answer: 1
It has to have at least owe to be diagonalizable.
But it can have exactly 1. E.g.

$$
\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right] \longleftrightarrow \text { diagonalizable because }
$$

(2) True or false:
a) Every $S \times S$ matrix with S distinct eigenvalues is diagonalizable. True
Each eigenspace has dimension at least 1 so their dimensions sum to s, hence the matrix is diagonalizable.
b) Every invertible matrix is diagonalizable False

Counterexample: $\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$
c) Every diagonalizable matrix is invertible False Counterexample: $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ ($\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ also works!) (Note: A is invertible $\Leftrightarrow 0$ is not an eigenvalue of A)
d) If $A \neq 0$ and $A^{2}=0$ then A is not diagonalizable True
If O is the only eigenvalue of A \& is diagonatizable then $A=0$. So to be diagonalizable, A must, have a nonzero eigenvalue, λ. But if $A \vec{v}=\lambda \vec{v}$ and $\vec{v} \neq 0$ then

$$
A^{2} \vec{v}=A(A \vec{v})=A(\lambda \vec{v})=\lambda(A \vec{v})=\lambda^{2} \vec{v} \neq \overrightarrow{0}
$$

e) Every 2×2 matrix with more than owe eigenvalue is diagonalizable True
see part (a)
f) Every upper triangular matrix is diagonalizable False Counterex ample: $\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$

