Similar Matrices suppose A and B are non matrices. A and B are similar if: Abstract definition: There is a vector space V, a linear transformation T: V-V and bases B, Bz for V such $A = B_1[T]_{B_1}$ and $B = B_2[T]_{B_2}$ that Concrete definition: There is an invertible matrix P such that A = (P)BP-1 think of P as B, FB2

-

(D) Try to diagonalize:
a)
$$A = \begin{bmatrix} 2 & i \\ 0 & 3 \end{bmatrix}$$
 $A = \begin{bmatrix} i & i \\ 0 & i \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} i & i \\ 0 & i \end{bmatrix}^{-1}$
(D) $\chi_A(t) = det(A - tI_2) = det(\begin{bmatrix} 2-t & i \\ 0 & 3-t \end{bmatrix})$
 $= (2-t)(3-t)$

Ergenvalues: 2,3
(2) Basis for E_2: Null (A-2I₂) = span{[0]}
A-2[
$$\binom{1}{0}$$
] = [$\binom{0}{0}$ $\binom{1}{1}$] $\frac{R_2 = R_2 - R_1}{0}$ [$\binom{0}{0}$] $\frac{1}{X_2} = 0$] $\frac{1}{X_1}$ [$\binom{1}{0}$]
Basis for E_3: Null (A-3I₂) = spon{[(]]}
A-3[$\binom{1}{0}$] = [$\binom{-1}{0}$] $\frac{R_1 = -R_1}{0}$ [$\binom{1}{0}$ $\binom{-1}{0}$] $\frac{X_1 = X_2}{X_2}$ free $\frac{1}{2}$ $\frac{1}{2}$]
(3) dim(E_2) + dim(E_3) = 2 So A is diagonalizable

b)
$$B = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

(1) Eigenvalues of $B : 2$
 $\chi_{B}(t) = det \begin{bmatrix} 2-t & 1 \\ 0 & 2-t \end{bmatrix} = (2-t)^{2}$
(2) Basis for E₂: Null (B - 2I₂) = span $\sum \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times \frac{1}{2} = 0 = \sum \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix} \times \frac{1}{2} = 0$
(3) dim (E₂) = $\sum \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times \frac{1}{2} = 0$

(2) Find a
$$2 \times 2$$
 matrix A such that:
• $\begin{bmatrix} 7 \\ 1 \end{bmatrix}$ is an eigenvector of A with eigenvalue 5
• $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of A with eigenvalue -1
Let $B = \{\begin{bmatrix} 7 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}\}$ and $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined
by $T(x) = Ax$. Note that B is a basis
for \mathbb{R}^2 and the matrix for T velative to the
basis B is $\begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$. Since $[T]_{Std} = A$, this tells
us that
 $A = \prod_{sth \in B} \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \prod_{sth \in Std} matrix = \prod_{sth \in B} \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \prod_{sth \in B} \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \prod_{sth \in B} \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \prod_{sth \in B} \begin{bmatrix} 3 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ -1 \end{bmatrix} \prod_{s \neq 1} \begin{bmatrix} 3 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ -1 \end{bmatrix} \prod_{s \neq 1} \begin{bmatrix} 3 & -1 \\ -1/2 \end{bmatrix} \begin{bmatrix} 3 & -4 \\ -1/2 \end{bmatrix} \begin{bmatrix} 3 & -4 \\ -1/2 \end{bmatrix}$

$$\frac{\text{Jhy Diagonalize?}}{\text{D} A = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} B = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} A \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}^{-1}$$

$$A) A^{1 \circ \circ} = \begin{bmatrix} 3^{1 \circ \circ} & 0 \\ 0 & (-1)^{1 \circ \circ} \end{bmatrix} = \begin{bmatrix} 3^{1 \circ \circ} & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 9 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A^{3} = A^{2} \cdot A = \begin{bmatrix} 9 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 27 & 0 \\ 0 & -1 \end{bmatrix}$$

$$A^{n} = \begin{bmatrix} 3^{n} & 0 \\ 0 & (-1)^{n} \end{bmatrix}$$

V

$$b) \quad B^{100} = \frac{1}{2} \begin{bmatrix} 3^{100} + 1 & 3^{100} - 1 \\ 3^{100} - 1 & 3^{100} + 1 \end{bmatrix}$$

$$B^{100} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} A \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} A \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3^{100} & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3^{100} & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 3^{100} & 1 \\ 3^{100} & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} (3^{100} + 1) & \frac{1}{2} (3^{100} - 1) \\ \frac{1}{2} (3^{100} - 1) & \frac{1}{2} (3^{100} + 1) \end{bmatrix}$$

Extra Problems () What is the maximum number of eigenvalues a 5×5 matrix can have? Answer: 5 Each eigenvalue has an eigenvector and eigenvectors with different eigenvalues are always linearly independent. Since there can be at most s linearly independent vectors in R^S, a 5-5 matrix can have at most 5 eigenvalues. Also, there are 5×5 matrices which have this many eigenvalues. $\begin{bmatrix}
10000\\
02000\\
00300\\
00040
\end{bmatrix}$ E.g.

What is the minimum number a S=S matrix can
have and still be diagonalizable? Answer: 1
It has to have at least one to be diagonalizable.
But it can have exactly 1. E.g.
$$\begin{bmatrix} 2 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 2 \end{bmatrix}$$
 — diagonalizable because
it is a diagonal
matrix.