Similar Matrices

1. Suppose A and B are similar 2×2 matrices and $\operatorname{det}(A)=5$. What can you say about $\operatorname{det}(B)$?
2. Suppose A is a 2×2 matrix which is similar to the 0 matrix (i.e. the 2×2 matrix whose entries are all 0). What can you say about A ?
3. Suppose A is a 2×2 matrix which is similar to I_{2}. What can you say about A ?

Diagonalization

1. Try to diagonalize the following two matrices.

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right] \quad\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

2. Find a 2×2 matrix A such that $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ is an eigenvector of A with eigenvalue 5 and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector of A with eigenvalue -1 .

Why Diagonalize?

1. Suppose $A=\left[\begin{array}{cc}3 & 0 \\ 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] A\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]^{-1}$.
(a) What is A^{100} ?
(b) What is B^{100} ?
2. Find $\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]^{2021}$
3. Challenge Problem: (Repeated from a previous worksheet). What is $\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]^{2021}$?

Extra Problems

1. What is the maximum number of eigenvalues a 5×5 matrix can have? What is the minimum number it can have and still be diagonalizable?
2. For each statement below, explain why it is true or provide a counterexample to show it is false.
(a) Every 5×5 matrix with 5 distinct eigenvalues is diagonalizable.
(b) Every invertible matrix is diagonalizable.
(c) Every diagonalizable matrix is invertible.
(d) If A is a nonzero matrix and $A^{2}=0$ then A is not diagonalizable.
(e) Every 2×2 matrix with more than one eigenvalue is diagonalizable.
(f) Every upper triangular matrix is diagonalizable.
