Eigenvectors

1. Which of the following are eigenvectors of $\left[\begin{array}{cc}2 & 1 \\ -2 & 5\end{array}\right]$? For each one that is an eigenvector, state the corresponding eigenvalue.
(a)
$\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(b)
$\left[\begin{array}{l}1 \\ 2\end{array}\right]$
(c) $\left[\begin{array}{l}0 \\ 0\end{array}\right]$
(d) $\left[\begin{array}{l}-3 \\ -6\end{array}\right]$
2. Suppose \mathbf{v}_{1} and \mathbf{v}_{2} are eigenvectors of A, both with eigenvalue 5 . True or false: $3 \mathbf{v}_{1}-\mathbf{v}_{2}$ is an eigenvector of A. If true, find the corresponding eigenvalue. If false, give a counterexample.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be reflection across the line $x_{1}=x_{2}$. Find an eigenvector of T.
4. Find an eigenvector of the following matrix. You should not need to do any calculation.

$$
\left[\begin{array}{ccccc}
4 & 0 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 & 0 \\
0 & 0 & 17 & 0 & 0 \\
0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 0 & 6
\end{array}\right]
$$

5. For both matrices below, find the eigenvalues and corresponding eigenspaces.

$$
\left[\begin{array}{cc}
1 & 2 \\
-1 & 4
\end{array}\right]\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 1 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

