The Matrix of a Linear Transformation
(1) $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ defined by $T(B)=A B$

$$
A=\left[\begin{array}{cc}
1 & 5 \\
2 & 10
\end{array}\right]
$$

a) Find a basis for $M_{2 \times 2}$

Recall that a basis for a vector space is a set of vectors which span the whole space and are linearly independent.
Owe basis for $M_{2 \times 2}$ is

$$
\beta=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

To see this set spans all of $M_{2 \times 2}$, note that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

b) Write the matrix for T relative to the basis from part (a).
To find this matrix, we need to evaluate T on each vector in B and write the result as a coordinate vector relative to B.

$$
\begin{aligned}
& T\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 5 \\
2 & 10
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right] \leadsto\left[\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right] \\
& T\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 5 \\
2 & 10
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 \\
0 & 2
\end{array}\right] \leadsto\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right] \\
& T\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 5 \\
2 & 10
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
5 & 0 \\
10 & 0
\end{array}\right] \leadsto\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right] \\
& T\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 5 \\
2 & 10
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 5 \\
0 & 10
\end{array}\right] \leadsto\left[\begin{array}{l}
0 \\
0 \\
10
\end{array}\right] \\
& B[T]_{B}=\left[\begin{array}{llll}
1 & 0 & 5 & 0 \\
0 & 1 & 0 & 5 \\
2 & 2 & 0 & 0 \\
0 & 2 & 10
\end{array}\right]
\end{aligned}
$$

c) Is T one-to-one? Onto?
$T \quad 1-t_{0}-1 \Leftrightarrow{ }_{B}[T]_{B}$ has a pivot in every column in REF
T onto $\Leftrightarrow{ }_{B}[T]_{\beta}$ has a pivot in every row iv REF

$$
\left[\begin{array}{cccc}
1 & 0 & 5 & 0 \\
0 & 1 & 0 & 0 \\
2 & 0 & 10 & 0 \\
0 & 2 & 0 & 10
\end{array}\right] \xrightarrow{R_{3}=R_{3}-2 R_{1}}\left[\begin{array}{cccc}
1 & 0 & 5 & 0 \\
0 & 1 & 0 & 5 \\
0 & 0 & 0 & 0 \\
0 & 2 & 0 & 10
\end{array}\right] \xrightarrow{R_{4}=R_{4}-2 R_{2}}
$$

No pivots in columns 3 \& 4 $\Rightarrow T$ is not 1 -to- 1
No pivots in rows $3 \& 4$ $\Rightarrow T$ is not onto
d) Find bases for $\operatorname{ker}(T)$ and range (T).

$$
\begin{aligned}
& \operatorname{Ker}(T) \sim \operatorname{Null}\left(C_{B}[T]_{B}\right) \\
& \operatorname{range}(T) \sim \operatorname{Col}\left({ }_{B}[T]_{B}\right) \\
& \text { Null }\left(_{B}[T]_{B}\right): \quad\left[\begin{array}{llll}
1 & 0 & 5 & 0 \\
0 & 1 & 0 & 5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
x_{1}=-5 x_{3} \\
x_{2}=-5 x_{4} \\
x_{3} \text { free } \\
\\
\end{array} 0 \text { tree }
\end{aligned}
$$

Solutions to homogeneous equation:

$$
\left[\begin{array}{c}
-5 x_{3} \\
-5 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-5 \\
0 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
0 \\
-5 \\
0 \\
1
\end{array}\right]
$$

$$
\left.\operatorname{Null} C_{B}[T]_{B}\right)=\operatorname{span}\left\{\left[\begin{array}{c}
-s \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-5 \\
0 \\
1
\end{array}\right]\right\}
$$

To find a basis for $\operatorname{ker}(T)$, translate these vectors back to $M_{2 \times 2}$.

$$
\left.\begin{array}{l}
\operatorname{ker}(T)=\operatorname{span}\left\{\left[\begin{array}{cc}
-5 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & -5 \\
0 & 1
\end{array}\right]\right\} \\
\operatorname{Co}\left(C_{B}[T]_{B}\right):\left[\begin{array}{llll}
1 & 0 & 5 & 0 \\
0 & 0 & 0 \\
2 & 0 & 1 & 0 \\
0 & 2 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 5 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
\text { i } \\
0
\end{array}\right]
$$

To find a basis for $\operatorname{vange}(T)$, translate these vectors back to $M_{2 \times 2}$

$$
\operatorname{range}(T)=\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right]\right\}
$$

Change of Basis
(1) Suppose V is a 2 -dimensional vector space and $B=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}, C=\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ are bases for V such that

$$
\begin{aligned}
& \vec{u}_{1}=\vec{v}_{1}+\vec{v}_{2} \\
& \vec{u}_{2}=\vec{v}_{1}-\vec{v}_{2}
\end{aligned}
$$

a) If $\vec{\omega} \in V$ such that $[\vec{\omega}]_{c}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$, what is $[\hat{\omega}]_{B}$?

$$
\begin{aligned}
{[\dot{b}]_{C}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \Rightarrow \quad \vec{\omega} } & =2 \cdot \vec{u}_{1}+3 \cdot \vec{u}_{2} \\
& =2\left(\vec{v}_{1}+\vec{v}_{2}\right)+3\left(\vec{v}_{1}-\vec{v}_{2}\right) \\
& =50\left([\vec{u}]_{B}=\left[\begin{array}{l}
5 \\
-1
\end{array}\right]\right.
\end{aligned}
$$

b) Find a matrix A such that for all $\vec{x} \in V, \quad A[\vec{x}]_{c}=[\stackrel{\rightharpoonup}{x}]_{b}$.
Suppose $[x]_{c}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. Then

$$
\begin{aligned}
\vec{x} & =x_{1} \cdot \vec{u}_{1}+x_{2} \cdot \vec{u}_{2} \\
& =x_{1}\left(\vec{v}_{1}+\vec{v}_{2}\right)+x_{2}\left(\vec{v}_{1}-\vec{v}_{2}\right) \\
& =\left(x_{1}+x_{2}\right) \vec{v}_{1}+\left(x_{1}-x_{2}\right) \vec{v}_{2}
\end{aligned}
$$

Hence $[\vec{x}]_{B}=\left[\begin{array}{l}x_{1}+x_{2} \\ x_{1}-x_{2}\end{array}\right]$
This tells us that $A\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}x_{1}+x_{2} \\ x_{1}-x_{2}\end{array}\right]$
1^{14} col of $A=A\left[\begin{array}{l}1 \\ 2^{\text {nd }} \text { col of } A=\left[\begin{array}{c}1 \\ 1\end{array}\right] \Rightarrow A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\end{array}\right]=\left[\begin{array}{c}1 \\ 1\end{array}\right]$

The matrix A is the change-ofcoordinates matrix from C to B Caka "change of basis matrix"), written ${ }_{B \in C}^{P}$
c) Find a matrix D sit. for all $\vec{x} \in V$, $D[\vec{x}]_{B}=[\dot{x}]_{C}$.

In other words, find $P_{c \in B}$.
Two approaches.
Approach 1: Guess-and-clueck
We can repeat the method of the solution to part (b) if we can write \vec{v}_{1} and \vec{v}_{2} as lowear combinations of \vec{u}_{1} and \vec{u}_{2}.
Notice

$$
\begin{aligned}
& \vec{u}_{1}+\vec{u}_{2}=\left(\vec{v}_{1}+\vec{v}_{2}\right)+\left(\vec{v}_{1}-\vec{v}_{2}\right)=2 \vec{v}_{1} \\
& \vec{u}_{1}-\vec{u}_{2}=\left(\vec{v}_{1}+\vec{v}_{2}\right)-\left(\vec{v}_{1}-\vec{v}_{2}\right)=2 \vec{v}_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \vec{v}_{1}=\frac{1}{2} \vec{u}_{1}+\frac{1}{2} \vec{u}_{2} \\
& \vec{v}_{2}=\frac{1}{2} \vec{u}_{1}-\frac{1}{2} \vec{u}_{2}
\end{aligned}
$$

So

$$
P=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right]
$$

Approach 2: Systematic approach Notice that $\begin{aligned} & P=P_{B \in C}^{-1} \\ & C \in B\end{aligned}$

So we just meed to invert $\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.

$$
\begin{aligned}
& {\left[\begin{array}{cc|cc}
1 & 1 & 1 & 0 \\
1 & -1 & 0 & 1
\end{array}\right] \xrightarrow{R_{2}=R_{2}-R_{1}}\left[\begin{array}{cc|cc}
1 & 1 & 1 & 0 \\
0 & -2 & -1 & 1
\end{array}\right] \xrightarrow{R_{2}=-\frac{1}{2} R_{2}}} \\
& {\left[\begin{array}{cc|cc}
1 & 1 & 1 & 0 \\
0 & 1 & 1 / 2 & -1 / 2
\end{array}\right] \xrightarrow{R_{1}=R_{1}-R_{2}}\left[\begin{array}{ll|ll}
1 & 0 & 1 / 2 & 1 / 2 \\
0 & 1 & 1 / 2 & -1 / 2
\end{array}\right]} \\
& \\
& P=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right]
\end{aligned}
$$

(2) $B=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\} \quad C=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$

Find $P_{c \in B}$.
Two approaches

$$
\left.\begin{array}{rl}
P & =\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
\text { sta } \& B
\end{array}\right] \begin{array}{ll}
P & =\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \\
\text { stA \&C } \\
{\left[\begin{array}{ll|ll}
1 & 2 & 1 & 0 \\
2 & 1 & 0 & 1
\end{array}\right] \xrightarrow{R_{2}=R_{2}-2 R_{1}}\left[\begin{array}{cc|cc}
1 & 2 & 1 & 0 \\
0 & -3 & -2 & 1
\end{array}\right] \xrightarrow{R_{2}=-\frac{1}{3} R_{2}}} \\
{\left[\begin{array}{ll|cc}
1 & 2 & 1 & 0 \\
0 & 1 & 2 / 3 & -1 / 3
\end{array}\right] \xrightarrow{R_{1}=R_{1}-2 R_{2}}\left[\begin{array}{cc|cc}
1 & 0 & -1 / 3 & 2 / 3 \\
0 & 1 & 2 / 3 & -1 / 3
\end{array}\right]}
\end{array}
$$

Check: $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{cc}-1 / 3 & 2 / 3 \\ 2 / 3 & -1 / 3\end{array}\right]=\left[\begin{array}{cc}-1 / 3+4 / 3 & 2 / 3-2 / 3 \\ -2 / 3+2 / 3 & 4 / 3-1 / 3\end{array}\right]$

$$
\underset{C \in B}{P}=\left[\begin{array}{cc}
-1 / 3 & 2 / 3 \\
2 / 3 & -1 / 3
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Approach 2: The formula for $P_{c \in B}$ when $B=\left\{\vec{b}_{1} \ldots \vec{b}_{n}\right\}$ and $C=\left\{\vec{c}_{1} \ldots \vec{c}_{n}\right\} \begin{aligned} & c \in B \\ & \text { is }\end{aligned}$

$$
{\underset{c \in B}{ }=\left[\begin{array}{ccc}
1 & 1 & \\
{\left[\vec{b}_{1}\right]_{C}} & {\left[\vec{b}_{2}\right]_{c}} & \cdots
\end{array}\right]\left[\begin{array}{c}
\vec{b}_{n} \\
1
\end{array}\right]_{c}}_{1}^{1} \quad[
$$

so to find $P_{C \in B}$ we weed to find coordinate vectors in the basis C for $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]$
I.e. we weed to write $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ as linear combinations of $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}2\end{array}\right]$. I.e. we weed to find $a, b, c, d \in \mathbb{R}$ sit.

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right]=a\left[\begin{array}{l}
1 \\
2
\end{array}\right]+b\left[\begin{array}{l}
2 \\
1
\end{array}\right] \leadsto\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{l}
1 \\
-1
\end{array}\right]=c\left[\begin{array}{l}
1 \\
2
\end{array}\right]+d\left[\begin{array}{l}
2 \\
1
\end{array}\right] \leadsto\left[\begin{array}{ll|l}
1 & 2 & 1 \\
2 & 1 & -1
\end{array}\right]} \\
& {\left[\begin{array}{ll|ll}
1 & 2 & 1 & 1 \\
2 & 1 & 1 & -1
\end{array}\right] \xrightarrow{R_{2}=R_{2}-2 R_{1}}\left[\begin{array}{cc|cc}
1 & 2 & 1 & 1 \\
0 & -3 & -1 & -3
\end{array}\right]} \\
& \xrightarrow{R_{2}=-\frac{1}{3} R_{2}}\left[\begin{array}{ll|rl}
1 & 2 & 1 & 1 \\
0 & 1 & 1 / 3 & 1
\end{array}\right] \xrightarrow{R_{1}=R_{1}-2 R_{2}}\left[\begin{array}{cc|cc}
1 & 0 & 1 / 3 & -1 \\
0 & 1 & 1 / 3 & 1
\end{array}\right] \\
& S_{0} \quad\left(\begin{array}{ccc}
P & =\left[\begin{array}{cc}
1 / 3 & -1 \\
1 / 3 & 1
\end{array}\right]
\end{array}\right.
\end{aligned}
$$

In general if $B_{\mathbb{R}^{n}}=\left\{\vec{b}_{1}, \ldots \vec{b}_{n}\right\}, C=\left\{\vec{c}_{1} \cdots \vec{c}_{n}\right\}$ are bases for \mathbb{R}^{n}, you can find ${ }_{C B}$ by row reducing

$$
\left[\begin{array}{cc|cc}
i_{1} & & \vdots & 1 \\
c_{1} & e_{n} & 1 & 1 \\
1 & \ldots & b_{n}
\end{array}\right] \leadsto\left[\begin{array}{l|l}
I_{n} & \underset{c \leftarrow B}{ }
\end{array}\right]
$$

