The Matrix of a Linear Transformation Relative to a Basis

1. Let $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ be the linear transformation defined by $T(B)=A B$ where

$$
A=\left[\begin{array}{cc}
1 & 5 \\
2 & 10
\end{array}\right]
$$

(a) Find bases for the domain and codomain of T and write the matrix of T relative to those bases.
(b) Is T one-to-one? Onto?
(c) Find a basis for the kernel and range of T.

Change of Basis

1. Suppose V is a 2 dimensional vector space and $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ are both bases for V. Also suppose that $\mathbf{u}_{1}=\mathbf{v}_{1}+\mathbf{v}_{2}$ and $\mathbf{u}_{2}=\mathbf{v}_{1}-\mathbf{v}_{2}$.
(a) If \mathbf{w} is a vector in V such that $[\mathbf{w}]_{\mathcal{C}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ then what is $[\mathbf{w}]_{\mathcal{B}}$?
(b) Find a matrix A such that for all vectors $\mathbf{x} \in V, A[\mathbf{x}]_{\mathcal{C}}=[\mathbf{x}]_{\mathcal{B}}$.
(c) Find a matrix B such that for all vectors $\mathbf{x} \in V, B[\mathbf{x}]_{\mathcal{B}}=[\mathbf{x}]_{\mathcal{C}}$.
2. Let $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$ and $\mathcal{C}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$. Find the change-of-coordinates matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$.
