Review (1) True or False: The set of invertible 3×3 matrices is a subspace of $M_{3 \times 3}$ (the space of all 3×3 matrices). False
Remember that there are three r things to check to see if a subset W of a vector space V is a subspace of V : W must contain the zero vector of V, W must be closed under vector addition and W must be closed under scalar multiplication.
(1) Contains the zero vector of $M_{3 \times 3}$? No. $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ is invertible.
(2) Closed under vector addition? No. $\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right] \&\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$ are invertible
(3) Closed under scalar multiplication? but $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -0 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ is not.
No. $\left[\begin{array}{lll}1 & 0 \\ 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ is invertible but $O \cdot\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ is not.

Coordinates (1)

$$
\begin{aligned}
& p(x)=-2 x^{2}+4 x+4 \\
& q(x)=3 x^{2}+6 x-2 \\
& r(x)=-2 x^{2}+x+3
\end{aligned}
$$

a) What is the dimension of $\operatorname{span}\{p(x) q(x), r(x)\}$? Method: Translate to \mathbb{R}^{3} using a nice basis for \mathbb{P}_{2} and solve there using row reduction.
Basis for $\mathbb{P}_{2}: B=\left\{x^{2}, x, 1\right\}$

$$
[p(x)]_{B}=\left[\begin{array}{c}
-2 \\
4 \\
4
\end{array}\right] \quad[q(x)]_{B}=\left[\begin{array}{c}
3 \\
6 \\
-2
\end{array}\right] \quad[r(x)]_{B}=\left[\begin{array}{c}
-2 \\
1 \\
3
\end{array}\right]
$$

dimension of $\operatorname{span}\{p(x), q(x), r(x)\}=\operatorname{rank}$ of $\left[\begin{array}{ccc}-2 & 3 & -2 \\ 4 & 6 & 1 \\ 4 & -2 & 3\end{array}\right]$

$$
\left[\begin{array}{ccc}
-2 & 3 & -2 \\
4 & 6 & 1 \\
4 & -2 & 3
\end{array}\right] \xrightarrow{\substack{R_{2}=R_{2}+2 R_{1} \\
R_{3}=R_{3}+2 R_{1}}}\left[\begin{array}{ccc}
-2 & 3 & -2 \\
0 & 12 & -3 \\
0 & 4 & -1
\end{array}\right] \xrightarrow{R_{2}=\frac{1}{3} R_{2}}\left[\begin{array}{ccc}
-2 & 3 & -2 \\
0 & 4 & -1 \\
0 & 4 & -1
\end{array}\right] \xrightarrow{R_{3}=R_{3}-R_{2}}
$$

$\left[\begin{array}{ccc}-2 & 3 & 2 \\ 0 & 4 & -1 \\ 0 & 0 & 0\end{array}\right]$ REF
2 pivots \Rightarrow rank $2 \Rightarrow$ dimension of $\operatorname{span}\{p(x), q(x), r(x)\}$ is 2 .
b) Find a basis for $\operatorname{span}\{p(x), q(x), r(x)\}$

Recall that a basis for a vector space (or a subspace) is a list of vectors which span the whole space and which are linearly independent.
$p(x), q(x), r(x)$ span all of $\operatorname{span}\{p(x), q(x), r(x)\}$ but we know from part (a) that they are not linearly independent. So we want to remove some to make them linearly independent. We can do this by translating to \mathbb{R}^{3}, row reducing, and just keeping the owes corresponding to pivot columns.
Row reduced matrix in \mathbb{R}^{3} (from part (a)): $\left[\begin{array}{ccc}-2 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{cc}3 & 2 \\ 4 \\ 0\end{array}\right]-10$
So one basis for $\operatorname{span}\{p(x), q(x), r(x)\}$ Corresponds to $p(x)$ is $p(x), q(x)$

The matrix of a Linear Transformation.
(1) Let $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{3}$ be defined by

$$
T(p)=\left[\begin{array}{l}
\int_{0}^{2} p(x) d x \\
\int_{1}^{3} p(x) d x
\end{array}\right]
$$

a) Let $B=\left\{1, x, x^{2}\right\}$. Let $C=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right\},\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$. What is $\quad[T]_{\beta}$?
Remember that ${ }_{C}[T]_{B}$ is the matrix representing T relative to the bases B and C. To find it, check what T does to each vector in B and write the results as coordinate veefors in C.

$$
\begin{aligned}
& \text { results as coordinate veefors in C. } \\
& T(1)=\left[\begin{array}{l}
\int_{0}^{2} 1 d x \\
\int_{1}^{3} 1 d x
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \quad T(x)=\left[\begin{array}{l}
\int_{0}^{2} x d x \\
\int_{1}^{3} x d x
\end{array}\right]=\left[\begin{array}{l}
x^{2} / 2 l_{0}^{2} \\
x^{2} / 2 l_{1}^{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right] \\
& T\left(x^{2}\right)=\left[\begin{array}{l}
\int_{0}^{2} x^{2} d x \\
\int_{0}^{3} x^{2} d x
\end{array}\right]=\left[\begin{array}{l}
x^{3} / 3 l_{0}^{2} \\
x^{3} / 3 l_{1}^{3}
\end{array}\right]=\left[\begin{array}{l}
8 / 3 \\
26 / 3
\end{array}\right]
\end{aligned}
$$

$[T(1)]_{C}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$ since C is the standard

$$
\begin{aligned}
& {[T(x)]_{C}=\left[\begin{array}{l}
2 \\
4
\end{array}\right]} \\
& {\left[T\left(x^{2}\right)\right]_{C}=\left[\begin{array}{c}
8 / 3 \\
26 / 3
\end{array}\right]}
\end{aligned}
$$

$$
C T]_{B}=\left[\begin{array}{llc}
2 & 2 & 8 / 3 \\
2 & 4 & 26 / 3
\end{array}\right]
$$ of the standard basis and is not true of other bases for \mathbb{R}^{n}.

b) Find a basis for range (T).

Recall that the range of T corresponds to the column space of any matrix representing T We weed to row reduce $C[T]_{B}$.

$$
\left[\begin{array}{lll}
2 & 2 & 8 / 3 \\
2 & 4 & 26 / 3
\end{array}\right] \xrightarrow{R_{2}=R_{2}-R_{1}}\left[\begin{array}{ccc}
(2) & 2 & 8 / 3 \\
0 & (2) & 18 / 3
\end{array}\right] \quad R E F
$$

A basis for $\operatorname{Col}\left(C_{C}[\tau]_{B}\right)$ is $\left[\begin{array}{l}2 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]$.
Normally we would have to translate back from coordinate vectors in C to the actual vectors, but since C is the standard basis, we don't.
So one basis for $\operatorname{range}(\tau)$ is $\left\{\left[\begin{array}{l}2 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right\}$ (which actually means range (T) is all of \mathbb{R}^{2} so any basis for \mathbb{R}^{2} would work].
c) What is the dimension of the kernel of T ? Recall that the Kernel of T corresponds to the null space of any matrix representing T.
Since $\operatorname{rank}\left(_{c}[T]_{\beta}\right)=2$, the null space has dimension 1 (by the rank-nullity theorem). So the Kernel of T also has dimension 1.
d) Find a nontrivial (i.e. nonzero) element of the kernel of T.
kernel of $T \approx \operatorname{Null}\left(c[T]_{B}\right)$

$$
\underset{\substack{R_{1}=\frac{1}{2} R_{1}}}{[T]_{B}}=\left[\begin{array}{lll}
2 & 2 & 8 / 3 \\
2 & 4 & 26 / 3
\end{array}\right] \xrightarrow{R_{2}=R_{2}-R_{1}}\left[\begin{array}{lll}
2 & 2 & 8 / 3 \\
0 & 2 & 18 / 3
\end{array}\right] \xrightarrow{R_{1}=R_{1}-R_{2}}\left[\begin{array}{ccc}
2 & 0 & -10 / 3 \\
0 & 2 & 18 / 3
\end{array}\right]
$$

$$
\xrightarrow{R_{2}=\frac{1}{2} R_{2}}\left[\begin{array}{ccc}
1 & 0 & -5 / 3 \\
0 & 1 & 3
\end{array}\right]
$$

Solutions to homogeneous equation:

$$
\begin{aligned}
& x_{1}=(5 / 3) x_{3} \\
& x_{2}=-3 x_{3} \\
& x_{3} \text { free }
\end{aligned} \quad \text { setting } x_{3}=3 \text { gives }\left[\begin{array}{c}
5 \\
-9 \\
3
\end{array}\right]
$$

Translating back to \mathbb{P}_{2} gives

$$
5 \cdot 1-9 \cdot x+3 \cdot x^{2}=3 x^{2}-9 x+5
$$

If you graph this polynomial, you will see it looks like this

The point is that its integral from 0 to 2 is 0 , as is its integral from 1 to 3
(2) A quadratic polynomial is completely determined by its value on any three points. This can be shown using linear algebra.
a) Let $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T(p)=\left[\begin{array}{l}
p(0) \\
p(1) \\
p(2)
\end{array}\right]
$$

Find $\tau(2), \tau(x), \tau\left(x^{2}\right)$

$$
T(1)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \tau(x)=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] \quad T\left(x^{2}\right)=\left[\begin{array}{l}
0^{2} \\
1^{2} \\
2^{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
4
\end{array}\right]
$$

b) Let $B=\left\{1, x, x^{2}\right\} \quad C=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ Find $c[T]_{B}$

Recall that $c[T]_{B}$ records what T does to each basis vector in B. To find it, we evaluate T on each vector in B and write the results as coordinate vectors in C. But since C is the standard basis for \mathbb{R}^{3}, the coordinate vector in C of any vector $\vec{v} \in \mathbb{R}^{3}$ is just \vec{v} itself (see comments on problem 1)

$$
\text { So } C[T]_{B}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right]
$$

c) Check that T is invertible and find $B^{\left[T^{-1}\right]_{C}}$

Recall that T is invertible if and only if the matrix $C[T]_{B}$ is invertible and if so, $B\left[T^{-1}\right]_{C}={ }_{C}[T]_{B}^{-1}$.

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 2 & 4 & 0 & 0 & 1
\end{array}\right] \xrightarrow{\begin{array}{l}
R_{2}=R_{2}-R_{1} \\
R_{3}=R_{3}-R_{1}
\end{array}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 \\
0 & 2 & 4 & -1 & 0 & 1
\end{array}\right] \xrightarrow{R_{3}=R_{3}-2 R_{2}}} \\
& {\left[\begin{array}{lll|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 \\
0 & 0 & 2 & 1 & -2 & 1
\end{array}\right] \xrightarrow{R_{3}=\frac{1}{2} R_{3}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & 1 / 2 & -1 & 1 / 2
\end{array}\right] \xrightarrow{R_{2}=R_{2}-R_{3}}} \\
& \left.\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -3 / 2 & 2 & -1 / 2 \\
0 & 0 & 1 & 1 & -1
\end{array}\right] \quad \text { So } C^{[T}\right]_{B} \text { is invertible and } \\
& { }_{B}\left[T^{-1}\right]_{C}={ }_{C}[\tau]_{B}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 / 2 & 2 & -1 / 2 \\
1 / 2 & -1 & 1 / 2
\end{array}\right]
\end{aligned}
$$

d) Find a polynomial $p(x) \in \mathbb{P}_{2}$ such that $p(0)=10 \quad p(1)=5$ and $p(2)=-3$
This is equivalent to asking for $p(*) \in \mathbb{P}_{2}$ such that $T(p)=\left[\begin{array}{c}10 \\ s \\ -3\end{array}\right]$. And finding a solution to $\tau(p)=\vec{v}$ is equivalent to solving $C[T]_{B} \vec{x}=[\vec{v}]_{C}$

So we want to solve $C[\tau]_{B} \vec{x}=\left[\begin{array}{c}10 \\ 5 \\ -3\end{array}\right]$
We can do so by multiplying by $c^{[T]_{\beta}^{-1}}$ (i.e. we can find a solution to $\tau(p)=\left[\begin{array}{c}16 \\ 5 \\ -3\end{array}\right]$ by applying T^{-1} to both sides).

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 / 2 & 2 & -1 / 2 \\
1 / 2 & -1 & 1 / 2
\end{array}\right]\left[\begin{array}{c}
10 \\
5 \\
-3
\end{array}\right]=\left[\begin{array}{c}
10 \\
-7 / 2 \\
-3 / 2
\end{array}\right]
$$

Translating back to \mathbb{P}_{2} gives $(-3 / 2) x^{2}-(7 / 2) x+10$
Moreover, a formula for the unique quadratic polynomial p sit. $p(0)=a_{0}, p(1)=a_{1}, p(2)=a_{2}$ is:

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-3 / 2 & -1 / 2 \\
1 / 2 & -1 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{cc}
a_{0} \\
-3 a_{0} / 2 & +2 a_{1}-a_{2} / 2 \\
a_{0} / 2-a_{1}+a_{2} / 2
\end{array}\right]\left(a_{0} / 2-a_{1}+a_{2} / 2\right) x^{2}+\left(-3 a_{0} / 2+2 a_{1}-a_{2}\right) x+a_{0}
$$

