Remember that there are three things to check to see if a subset W of a vector space V is a subspace of V: W must contain the zero vector of V, W must be closed under vector addition and W must be closed under scalar multiplication. (1) Contains the zero vector of M323? No. [300] is not invertible. Closed under vector addition? No. [:00] & [00] are invertille but [:00] + [:00] = [000] is not.
Closed under scalar multiplication?
Closed under scalar multiplication?
No. [:00] is invertible but O. [:00] = [:000] is not.

Coordinates (1)
$$p(x) = -2x^2 + 4x + 4$$

 $q(x) = 3x^2 + 6x - 2$
 $r(x) = -2x^2 + x + 3$
a) What is the dimension of span $p(x), q(x), r(x)$??
Method: Translate to \mathbb{R}^3 using a nice basis for \mathbb{P}_2 and
solve there using row reduction.
Basis for \mathbb{P}_2 : $\mathbb{B} = \{x^2, x, 1\}$
 $[p(x)]_{\mathbb{B}} = \begin{bmatrix} -2 \\ -4 \\ -4 \end{bmatrix} [q(x)]_{\mathbb{B}} = \begin{bmatrix} 3 \\ -2 \\ -2 \end{bmatrix} [r(x)]_{\mathbb{B}} = \begin{bmatrix} -2 \\ 3 \\ -2 \end{bmatrix}$
dimension of span $p(x), q(x), r(x)$? = rank of $\begin{bmatrix} -2 & 3 & -2 \\ 4 & -2 & 3 \end{bmatrix}$
 $\begin{bmatrix} -2 & 3 & -2 \\ 4 & -2 & 3 \end{bmatrix} \mathbb{R}^{2} \mathbb{R}^{2}$

b) Find a basis for span $\{p(x), q(x), r(x)\}$ Recall that a basis for a vector space (or a subspace) is a list of vectors which span the whole space and which are linearly independent. p(x), q(x), r(x) span all of span{p(x), q(x), r(x)} but we know from part (a) that they are not linearly independent. So we want to remove some to make them linearly independent. We can de this by translating to R³, row reducing, and just keeping the ones corresponding to pirot columns. Pivolumns (l So one basis for span { p(x), q(x), rcx} possible bases is p(x), q(x)

The matrix of a Linear Transformation.
(1) Let
$$T: \mathbb{P}_2 \longrightarrow \mathbb{R}^3$$
 be defined by
 $T(p) = \begin{bmatrix} \int_0^2 p(x) dx \\ \int_1^3 p(x) dx \end{bmatrix}$

a) Let
$$B = \{1, x, x^2\}$$
. Let $C = \{[0], [1]\}$. What
is $C[T]_B$?
Remember that $C[T]_B$ is the matrix representing T
relative to the bases B and C. To find it, check
what T does to each vector in B and write the
results as coordinate vectors in C.
 $T(i) = \begin{bmatrix} \int_{1}^{2} dx \\ \int_{1}^{3} dx \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} T(x) = \begin{bmatrix} \int_{1}^{2} x dx \\ \int_{1}^{3} x dx \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$
 $T(x^2) = \begin{bmatrix} \int_{1}^{3} x^2 dx \\ \int_{1}^{3} x^2 dx \end{bmatrix} = \begin{bmatrix} \frac{8/3}{2} \\ \frac{2}{3} \end{bmatrix}$

 $\left[T(i) \right]_{c} = \left[\begin{array}{c} z \\ z \end{array} \right]$ $\left[T(x) \right]_{c} = \left[\begin{array}{c} 2 \\ 4 \end{array} \right]$ $\left[\left[\left[\left(\times^2 \right) \right]_{C} \right]_{C} = \left[\begin{array}{c} 8/3 \\ 26/3 \end{array} \right]$

 $\begin{bmatrix} T \end{bmatrix}_{B} = \begin{bmatrix} 2 & 2 & 8/3 \\ 2 & 4 & 26/3 \end{bmatrix}$

Since C is the standard basis for R², for any vector $\vec{v} \in \mathbb{R}^2$, $[\vec{v}]_c = \vec{v}$ (e.g. to write [2] as a linear combination of [b] and [i] we just write [2] = 2·[0] + 4·[0] so the coordinate vector is [2]). This is a special feature of the standard basis and is not true of other bases for R.

) Find a basis for range (T).
Recall that the range of T corresponds to the column space of any matrix representing T
We need to row reduce
$$c[T]_B$$
.
 $\begin{bmatrix} 2 & 2 & 8/3 \\ 2 & 4 & 26/3 \end{bmatrix} \xrightarrow{R_1 = R_2 - R_1} \begin{bmatrix} (3) & 2 & 8/3 \\ 0 & (2) & 18/3 \end{bmatrix} REF$
A basis for $(ol(c[T]_B))$ is $\begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.
Normally we would have to translate back from coordinate vectors in C to the actual vectors, but since C is the standard basis, we don't.
So one basis for range(T) is $\begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.

Solutions to homogeneous equation:

$$x_{1} = (5/3) \times_{3}$$

$$x_{2} = -3 \times_{3}$$
Setting $x_{3} = 3$ gives $\begin{bmatrix} 5\\ -9\\ 3 \end{bmatrix}$

$$x_{3}$$
 free
$$Translating back to P_{2} gives$$

$$S \cdot 1 - 9 \cdot x + 3 \cdot x^{2} = \begin{bmatrix} 3 \times ^{2} - 9 \times + 5 \end{bmatrix}$$
If you graph this polynomial,
you will see it looks like this
$$form \ will \ see \ it \ looks \ like \ this \ many \ others)$$

$$\int \frac{1}{100} \int \frac{1}{$$

are

IF

+ + 2 3

(2) A quadratic polynomial is completely determined by its
value on any three points. This can be shown using
linear algebra.
a) Let
$$T: \mathbb{P}_2 \longrightarrow \mathbb{R}^3$$
 be the linear transformation
defined by
 $T(p) = \begin{bmatrix} p^{(o)} \\ P^{(i)} \\ p^{(i)} \end{bmatrix}$
Find $T(2), T(x), T(x^2)$
 $T(i) = \begin{bmatrix} i \\ i \end{bmatrix} T(x) = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} T(x^2) = \begin{bmatrix} 0 \\ 1 \\ 2^2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix}$
b) Let $B = \begin{cases} 1, x, x^2 \\ 5 \end{bmatrix} C = \begin{cases} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$
Find $c[T]_B$

Recall that
$$c[T]_B$$
 records what T does to each
basis vector in B. To find it, we evaluate
T on each vector in B and write the results
as coordinate vectors in C. But since C is
the standard basis for R^3 , the coordinate vector in
C of any vector $\vec{v} \in R^3$ is just \vec{v} itself (see
comments on problem 1)
 J_0 $c[T]_B = \begin{bmatrix} 1 & 0 & 6\\ 1 & 2 & 4 \end{bmatrix}$
C) Check that T is invertible and find $B[T^{-1}]_C$
Recall that T is invertible if and only if the
matrix $c[T]_B$ is invertible and if so $B[T^{-1}]_C = c[T]_B^{-1}$

So we want to solve
$$[T]_B \stackrel{\times}{\times} = \begin{bmatrix} c_0 \\ s_-3 \end{bmatrix}$$

We can do so by multiplying by $[T_T]_B^{-1}$
(i.e. we can find a solution to $T(p) = \begin{bmatrix} c_0 \\ s_-3 \end{bmatrix}$ by
applying T^{-1} to both sides).
 $\begin{bmatrix} c_0 & 0 \\ -3/2 & 2^{-1/2} \\ -3/2 \end{bmatrix} = \begin{bmatrix} c_0 \\ -7/2 \\ -3/2 \end{bmatrix}$
Translating back to \mathbb{P}_2 gives $(-3/2) \stackrel{\times}{\times} = (7/2) \stackrel{\times}{\times} + 10$
Moreover, a formula for the unique quadratic polynomial
 $p \quad \text{s.t.} \quad p(0) = a_0, \quad p(1) = a_1, \quad p(2) = a_2 \quad \text{is:}$
 $\begin{bmatrix} c_0 & 0 \\ -3/2 & 2^{-1/2} \\ -3/2 \end{bmatrix} = \begin{bmatrix} a_0 \\ -3/2 \\ -3/2 \end{bmatrix}$