Review

1. True or False: The set of invertible 3×3 matrices is a subspace of $M_{3 \times 3}$ (i.e. of the vector space of all 3×3 matrices.

More Practice with Coordinates

1. Consider the following three polynomials in \mathbb{P}_{2}.

$$
\begin{aligned}
& p(x)=-2 x^{2}+4 x+4 \\
& q(x)=3 x^{2}+6 x-2 \\
& r(x)=-2 x^{2}+x+3
\end{aligned}
$$

(a) What is the dimension of $\operatorname{span}\{p(x), q(x), r(x)\}$?
(b) Find a basis for $\operatorname{span}\{p(x), q(x), r(x)\}$.

The Matrix of a Linear Transformation Relative to a Basis

1. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
T(p)=\left[\begin{array}{c}
\int_{0}^{2} p(x) d x \\
\int_{1}^{3} p(x) d x
\end{array}\right]
$$

You do not need to check that T is a linear transformation.
(a) Let \mathcal{B} be the basis $1, x, x^{2}$ for \mathbb{P}^{2} and let \mathcal{C} be the basis $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$ for \mathbb{R}^{2} (i.e. the standard basis). Find $\mathcal{C}_{\mathcal{C}}[T]_{\mathcal{B}}$.
(b) Find a basis for the range of T.
(c) What is the dimension of the kernel of T ?
(d) Find a nontrivial element of the kernel of T. Try graphing the polynomial that you found.
2. You may have heard before that knowing the value of a quadratic polynomial on three points completely determines the polynomial. Let's use linear algebra to see how to do this.
(a) Let $T: \mathbb{P}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T(p)=\left[\begin{array}{l}
p(0) \\
p(1) \\
p(2)
\end{array}\right]
$$

Calculate $T(1), T(x)$, and $T\left(x^{2}\right)$.
(b) Let \mathcal{B} be the basis $1, x, x^{2}$ for \mathbb{P}^{2} and let \mathcal{C} be the standard basis for \mathbb{R}^{3}. Find $\mathcal{C}^{[}[T]_{\mathcal{B}}$.
(c) Check that T is invertible and find a matrix representing the inverse of T.
(d) Use your answer to part (c) to find a polynomial p such that $p(0)=10, p(1)=5$, and $p(2)=-3$.
(e) Challenge problem: Find a formula for the unique quadratic polynomial p such that $p\left(a_{0}\right)=b_{0}, p\left(a_{1}\right)=b_{1}$, and $p\left(a_{2}\right)=b_{2}$ (assuming that a_{0}, a_{1}, a_{2} are all distinct).

