(1) Let's use linear algebra to find a solution to the differential equation $y^{\prime \prime}+2 y^{\prime}-5 y=3 \sin (x)-2 \cos (x)$
a) Let $V=\operatorname{span}\{\sin (x), \cos (x)\}$. Show that $\sin (x), \cos (x)$ is a basis for V
Remember that a basis for a vector space is a list of vectors in the vector space such that:
(1) The span of the vectors is the entire vector space
(2) The vectors are linearly independent Let's check both of these here.
(1) $\operatorname{span}\{\sin (x), \cos (x)\}=V$ True by definition of V
(2) $\sin (x), \cos (x)$ lin. ind.

Suppose $a \cdot \sin (x)+b \cdot \cos (x)=0$. We weed to show $a=b=0$

$$
a \sin (x)+b \cos (x)=0 \Rightarrow\left\{\begin{array}{l}
a \sin (0)+b \cos (0)=0 \Rightarrow b=0 \\
a \sin (\pi / 2)+b \cos (\pi / 2)=0 \Rightarrow a=0
\end{array}\right.
$$

b) Write the coordinate vector of $3 \sin (x)-2 \cos (x)$ in the basis $\beta=\{\sin (x), \cos (x)\}$
Remember that if $\beta=\left\{\vec{b}_{1}, \ldots, \vec{b}_{n}\right\}$ is a basis for a vector space V then the coordinate vector of a vector $\vec{v} \in V$ is the vector $\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right] \in \mathbb{R}^{n}$ such that $\vec{v}=a_{1} \cdot \vec{b}_{1}+\ldots+a_{n} \cdot \vec{b}_{n}$.
So how do we find a coordinate vector for $\vec{v} \in V$?
(1) Write \vec{V} as a linear combination of the basis vectors
(2) Take the weights of this linear combination and make them the entries of a vector in \mathbb{R}^{n}
In this case, $3 \sin (x)-2 \cos (x)$ is already written as a linear combination of $\sin (x)$ and $\cos (x)$ so the coordinate vector is $[3 \sin (x)-2 \cos (x)]_{\beta}=\left[\begin{array}{c}3 \\ -2\end{array}\right]$
c) Let $T: V \rightarrow V$ be the linear transformation defined by

$$
T(f)=\frac{d^{2} f}{d x^{2}}+2 \frac{d f}{d x}-5 f
$$

Find the matrix for τ in the basis $\beta=\{\sin (x), \cos (x)\}$
To find the matrix for T, we evaluate T on each basis vector and write the result as a coordinate vector in this basis.

$$
\begin{aligned}
& T(\sin (x))=-\sin (x)+2 \cos (x)-5 \sin (x)=-6 \sin (x)+2 \cos (x) \\
& T(\cos (x))=-\cos (x)-2 \sin (x)-5 \cos (x)=-2 \sin (x)-6 \cos (x) \\
& {[T(\sin (x))]_{\beta}=\left[\begin{array}{r}
-6 \\
2
\end{array}\right] \quad \text { so } \beta[T]_{\beta}=\left(\left[\begin{array}{rr}
-6 & -2 \\
2 & -6
\end{array}\right]\right.} \\
& {[T(\cos (x))]_{\beta}=\left[\begin{array}{l}
-2 \\
-6
\end{array}\right]}
\end{aligned}
$$

d) Let A be the matrix from part (c) and \vec{v} the vector in \mathbb{B}^{2} from part (b). Find a solution to $A \vec{x}=\vec{v}$.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-6 & -2 \\
2 & -6
\end{array}\right] \vec{x}=\left[\begin{array}{c}
3 \\
-2
\end{array}\right]} \\
& {\left[\begin{array}{rr|c}
-6 & -2 & 3 \\
2 & -6 & -2
\end{array}\right] \xrightarrow{R_{2}=3 R_{2}+R_{1}}\left[\begin{array}{cc|c}
-6 & -2 & 3 \\
0 & -20 & -3
\end{array}\right] \xrightarrow{R_{2}=-\frac{1}{20} R_{2}}} \\
& {\left[\begin{array}{cc|c}
-6 & -2 & 3 \\
0 & 1 & 3 / 20
\end{array}\right] \xrightarrow{R_{1}=R_{1}+2 R_{2}}\left[\begin{array}{cc|c}
-6 & 0 & 66 / 20 \\
0 & 1 & 3 / 20
\end{array}\right] \xrightarrow{R_{1}=-\frac{1}{6} R_{1}}} \\
& {\left[\begin{array}{cc|c}
1 & 0 & -11 / 20 \\
0 & 1 & 3 / 20
\end{array}\right]} \\
& x_{1}=-11 / 20 \\
& x_{2}=3 / 20
\end{aligned}
$$

e) Use the answer to part (d) to find a solution to the differential equation $y^{\prime \prime}+2 y^{\prime}-5 y=3 \sin (x)-2 \cos (x)$
A solution to $y^{\prime \prime}+2 y^{\prime}-5 y=3 \sin (x)-2 \cos (x)$ is a function $f(x)$ such that $T(f)=3 \sin (x)-2 \cos (x)$. $T(f)=3 \sin (x)-2 \cos (x)$ has a solution in V if and only if $A \vec{x}=\vec{v}$ has a solution
We know from part (d) that $A \vec{x}=\vec{v}$ does have a solution: $\left[\begin{array}{c}-11 / 20 \\ 3 / 20\end{array}\right]$. This is the coordinate vector of a solution to $\tau(f)=3 \sin (x)-2 \cos (x)$. The solution is:

$$
(-11 / 20) \sin (x)+(3 / 20) \cos (x)
$$

(2) Is $\left\{\sin ^{2}(x), \cos ^{2}(x), 1\right\}$ a basis for $\operatorname{span}\left\{\sin ^{2}(x), \cos ^{2}(x), 1\right\} ?$

2 things to check:
(1) Do $\sin ^{2}(x), \cos ^{2}(x), 1$ span all of $\operatorname{span}\left\{\sin ^{2}(x), \cos ^{2}(x), 1\right\} ?$ yes.
(2) Are $\sin ^{2}(x), \cos ^{2}(x), 1$ linearly independent?

No.

$$
\begin{aligned}
& \sin ^{2}(x)+\cos ^{2}(x)=1 \\
& \sin ^{2}(x)+\cos ^{2}(x)-1=0
\end{aligned}
$$

Thus there is a linear combination of $\sin ^{2}(x), \cos ^{2}(x), 1$ which is equal to 0 even though not all coefficients are 0 .
(3) Write the coordinate vector of $p(x)=x^{2}-1$ in the basis $\beta=\left\{1, x, x^{2}+x+2\right\}$ for \mathbb{P}_{2}.
Method 1: Gees and check

$$
\begin{aligned}
& x^{2}-1=1 \cdot\left(x^{2}+x+2\right)-1 \cdot x-3 \cdot 1 \\
\Rightarrow & {[p(x)]_{\beta}=\left[\begin{array}{c}
-3 \\
-1 \\
1
\end{array}\right] }
\end{aligned}
$$

Method 2: Translate to \mathbb{R}^{3} using a nicer basis \& solve with row reduction

$$
\text { Basis } C=\left\{x^{2}, x, 1\right\}
$$

$$
[1]_{C}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad[x]_{C}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad\left[x^{2}+x+2\right]_{C}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]^{2}[p(x)]_{C}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

Write $p(x)$ as a linear
Write $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ as a (invar combination of $1, x, x^{2}+x+2 \Rightarrow$ combination of $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$

$$
\left[\begin{array}{ccc|c}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 2 & -1
\end{array}\right] \xrightarrow{\text { switch } R_{1}}\left[\begin{array}{ccc|c}
1 & 0 & 2 & -1 \\
0 & 1 & 1 & 6 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow{R_{1}=R_{1}-2 R_{3}} R_{2}=R_{2}-R_{3}\left(\left.\begin{array}{lll|}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right\rvert\, \begin{array}{c}
-3 \\
-1 \\
1
\end{array}\right]
$$

(4) If the coordinate vector of a polynomial $q(x) \in \mathbb{P}_{2}$ in the basis $B=\left\{1, x, x^{2}+x+2\right\}$ is $[q(x)]_{B}=\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]$, what is $q(x)$?
Remember that the coordinate vector of $q(x)$ consists of the weights of a linear combination of the basis vectors that is equal to $q(x)$.

$$
\begin{aligned}
{[q(x)]_{\beta}=\left[\begin{array}{c}
\frac{1}{3} \\
-1
\end{array}\right] \Rightarrow q(x) } & =\frac{1 \cdot 1+3 \cdot x+(-1) \cdot\left(x^{2}+x+2\right)}{} \\
& =-x^{2}+2 x+3
\end{aligned}
$$

