) Let's use (inear algebra to find a solution to the
differential equation
$$y'' + 2y' - 5y = 3\sin(x) - 2\cos(x)$$

a) Let $V = \text{span}\{\sin(x), \cos(x)\}$. Show that $\sin(x), \cos(x)$ is
a basis for V
Remember that a basis for a vector space is a
list of vectors in the vector space such that:
() The span of the vectors is the entire
vector space
(2) The vectors are linearly independent
Let's check both of these here.
(1) span $\{\sin(x), \cos(x)\} = V$ True by definition of V
(2) $\sin(x), \cos(x)$ lin. ind.
Suppose $a.\sin(x) + b.\cos(x) = 0$. We need to show $a=b=0$
 $asin(x) + bcos(x) = 0 \Rightarrow \begin{cases} asin(\pi/2) + bcos(\pi/2) = 0 \end{cases} = 0$

(1

s) Write the coordinate vector of
$$3sin(x) - 2cos(x)$$
 in the
basis $B = \{sin(x), cos(x)\}$
Remember that if $B = \{b_{1}, ..., b_{n}\}$ is a basis for
a vector space V then the coordinate vector of
a vector $\vec{v} \in V$ is the vector $\begin{bmatrix} i \\ an \end{bmatrix} \in \mathbb{R}^{n}$
such that $\vec{v} = a_{1}\cdot b_{1} + ... + a_{n}\cdot b_{n}$.
So how do we find a coordinate vector for $\vec{v} \in V$?
(D) Write \vec{v} as a linear combination of the
basis vectors
(2) Take the weights of this linear combination
and make them the entries of a vector in \mathbb{R}^{n}
In this case, $3sin(x) - 2cos(x)$ is already written as
a linear combination of $sin(x)$ and $cos(x)$, so the
coordinate vector is $[3sin(x) - 2cos(x)]_{B} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

c) Let
$$T: V \rightarrow V$$
 be the linear transformation defined by

$$T(f) = \frac{d^{2}f}{dx^{2}} + 2\frac{df}{dx} - 5f$$
Find the matrix for T in the basis $\beta = \{\sin(x), \cos(x)\}$
To find the matrix for T , we evaluate T on each
basis vector and write the result as a coordinate
vector in this basis.

$$T(\sin(x)) = -\sin(x) + 2\cos(x) - 5\sin(x) = -6\sin(x) + 2\cos(x)$$

$$T(\cos(x)) = -\cos(x) - 2\sin(x) - 5\cos(x) = -2\sin(x) - 6\cos(x)$$

$$[T(\sin(x))]_{\beta} = \begin{bmatrix} -6\\2 \end{bmatrix} \quad S_{0} \in [T]_{\beta} = \begin{bmatrix} -6\\2 -6 \end{bmatrix}$$

d) Let A be the matrix from part (c) and
$$\vec{v}$$
 the vector in \mathbb{R}^2 from part (b). Find a solution to $A\vec{x} = \vec{v}$.

$$\begin{bmatrix} -6 & -2 \\ 2 & -6 \end{bmatrix} \vec{x} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} -6 & -2 \\ 2 & -6 \end{bmatrix} -2 \end{bmatrix} \xrightarrow{\mathbb{R}_2 = 3\mathbb{R}_2 + \mathbb{R}_1} \begin{bmatrix} -6 & -2 \\ 0 & -20 \end{bmatrix} -3 \xrightarrow{\mathbb{R}_2 = -\frac{1}{20}\mathbb{R}_2}$$

$$\begin{bmatrix} -6 & -2 \\ 2 & -6 \end{bmatrix} -2 \xrightarrow{\mathbb{R}_2 = 3\mathbb{R}_2 + \mathbb{R}_1} \begin{bmatrix} -6 & -2 \\ 0 & -20 \end{bmatrix} -3 \xrightarrow{\mathbb{R}_2 = -\frac{1}{20}\mathbb{R}_2}$$

$$\begin{bmatrix} -6 & -2 \\ 0 & 1 \end{bmatrix} \xrightarrow{\mathbb{R}_1 = \mathbb{R}_1 + 2\mathbb{R}_2} \begin{bmatrix} -6 & 0 \\ 0 & 1 \end{bmatrix} \xrightarrow{\mathbb{R}_1 = -\frac{1}{6}\mathbb{R}_1}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} -\frac{11/20}{3/20} \xrightarrow{\mathbb{R}_1 = -\frac{11}{20}\mathbb{R}_2} \xrightarrow{\mathbb{R}_2 = 3/20} \xrightarrow{\mathbb{R}_1 = -\frac{11}{20}\mathbb{R}_2}$$

e) Use the answer to part (d) to find a solution to
the differential equation
$$y'' + 2y' - 5y = 3sin(x) - 2cos(x)$$

A solution to $y'' + 2y' - 5y = 3sin(x) - 2cos(x)$ is
a function $f(x)$ such that $T(f) = 3sin(x) - 2cos(x)$.
 $T(f) = 3sin(x) - 2cos(x)$ has a solution in V if and
only if $A\vec{x} = \vec{v}$ has a solution
We know from part (d) that $A\vec{x} = \vec{v}$ does have a
solution i $\begin{bmatrix} -11/20\\ 3/20 \end{bmatrix}$. This is the coordinate
vector of a solution to $T(f) = 3sin(x) - 2cos(x)$.
The solution is:
 $(-11/20)sin(x) + (3/20)cos(x)$

(2) Is
$$\{\sin^2(x), \cos^2(x), 1\}$$
 a basis for
span $\{\sin^2(x), (\cos^2(x), 1\}\}$?
2 things to check:
(1) Do $\sin^2(x), \cos^2(x), 1$ span all of
span $\{\sin^2(x), \cos^2(x), 1\}$? Yes.
(2) Are $\sin^2(x), \cos^2(x), 1$ linearly independent?
No. $\sin^2(x) + \cos^2(x) = 1$ so
 $\sin^2(x) + \cos^2(x) - 1 = 0$.
Thus there is a linear combination of
 $\sin^2(x), \cos^2(x), 1$ which is equal to 0 even
though not all coefficients are 0.

3 Write the coordinate vector of
$$p(x) = x^2 - 1$$
 in the
basis $\beta = \{1, x, x^2 + x + 2\}$ for \mathbb{P}_2 .
Method 1: Guess and check
 $x^2 - 1 = 1 \cdot (x^2 + x + 2) - 1 \cdot x - 3 \cdot 1$
 $\Rightarrow [p(x)]_{\mathcal{B}} = \begin{bmatrix} -3 \\ -1 \\ 1 \end{bmatrix}$
Method 2: Timustate to \mathbb{R}^3 using a nicer basis & solve with
how reduction
Basis $C = \{x^2, x, 1\}$
 $[1]_C = \begin{bmatrix} 0 \\ 1 \end{bmatrix} [x]_C = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} [x^2 + x + 2]_C = \begin{bmatrix} 1 \\ 2 \end{bmatrix} [p(x)]_C = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$
Write $p(x)$ as a linear
combination of $l_{1, x}, x^2 + x + 2 \Rightarrow$ combination of $\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

F The coordinate vector of a polynomial
$$q(x) \in P_2$$
 in
the basis $B = \{1, x, x^2 + x + 2\}$ is $(q(x)]_B = \begin{bmatrix} \frac{1}{2} \\ -1 \end{bmatrix}$, what
is $q(x)$?
Remember that the coordinate vector of $q(x)$ consists of
the weights of a linear combination of the basis
vectors that is equal to $q(x)$.
 $[q(x)]_B = \begin{bmatrix} \frac{1}{2} \\ -1 \end{bmatrix} \implies q(x) = 1 \cdot 1 + 3 \cdot x + (-1) \cdot (x^2 + x + 2)$
 $= (-x^2 + 2x + 3)$