Math 54, Fall 2016

Math 54 Midterm 1 Review Solutions

1. Suppose the following system has exactly two free variables: z3 and x4.

(a)

(b)

a11x1 + a12T2 + a13°3 + A14T4 + A15T5
a21%1 + a22T2 + a23x3 + A24T4 + A25X5

a31x1 + a32T2 + a33x3 + a34T4 + a35x5

How many solutions does the homogeneous equation have?

A: Since there are free variables, the homogeneous equation has infinitely many
solutions.

ail ais . .
Let vi = [ggﬂ .., Vg = [gig} Are {vi,va, Vs, V4, v5} linearly independent?

A: These vectors are just the columns of the coefficient matrix from the system
written above. Since the system has free variables, the coefficient matrix does not
have a pivot in every column. So the vectors are not linearly independent.

Let A = [vivav3vyvs]. Find a basis for Col A.

A: One basis for the column space of a matrix is simply the columns of the matrix
that have pivot positions. So in this case one basis for Col A is {vi,va,Vvs}.

What is rank A?

A: The rank of a matrix is the dimension of its column space— i.e. the number of
vectors in a basis for the column space. From part (c), we can see that a basis for
Col A has 3 vectors, so the rank of A is 3.

Do v1, Vs, V3, Vy, vy span R3?
A: This is equivalent to asking if every row of A has a pivot. Since there are three

pivot columns and three rows, there must be a pivot in every row. So these vectors
do span R3.

Let T : R® — R3 be the linear transformation defined by T'(x) = Ax. Is T
one-to-one? Is T onto?

A: T is one-to-one if and only if its standard matrix has a pivot in every column.
Since T"s standard matrix is A, this means that 7" is not one-to-one (because we
have already said that A does not have a pivot in every column).

On the other hand, T is onto if and only if its standard matrix has a pivot in every
row. As we have already seen (see part (e)), A does have a pivot in every row, so
T is onto.

Does the matrix equation Ax = b have a solution for every b € R3? When it does
have a solution, is the solution unique?

A: A solution exists for all b € R? if and only if A has a pivot in every row. So a
solution does always exist. A solution to Ax = b is only unique if A has a pivot
in every column. So in this case the solution is not unique.

2. Let A be an n X n matrix.
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(a) Simplify (I + A+ A2+ ...+ A" 1)(I - A)
A: Since we can distribute matrix multiplication we get

(IT+A+ A+ A" NI -A) =TT -A)+ AT - A)+ AT - A)+...+ A" (I - A)
=T -A)+(A-AH (A2 A+ .. A" —am)
=TI+ (A-A)+ (A2 - A+ ...+ (A A 4 Am
=T+A™

(b) If (I — A) is invertible, find an expression equivalent to (I — A™)(I — A)~! (hint:
use part (a)).
A: By part (a), (I + A+ A%+ ...+ A™ Y (I — A) = (I — A™). Multiplying both
sides by the inverse of (I —A) we get [+ A+ A% +.. .+ A" L = (I—-A™)(I—-A)~L

3. Find a basis for Col A and a basis for Null A.
0 2
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A: To find a basis for Col A we row reduce A to find which columns have pivots.

0 2 2 -2 1 -1 0 3 1 -1 0 3
1 -1 0 3 0 2 2 -2 0 2 2 -2
21 3 317012 1 3 3|7 1]o 3 3 -3
3 -1 2 7 3 -1 2 7] |o 2 2 -2
1 -1 0 3 1 -1 0 37
0 1 1 -1 0 1 1 -1
1o 3 3 =3l 7 lo 0o 0 o
0o 2 2 -2/ o 0o 0 o]

At this point we can see that the first and second columns are the only pivot columns
so one basis for Col A is the first and second columns of A:

A few words of caution here: applying elementary row operations to a matrix changes
the column space so we had to take the columns from A itself to get a basis for Col A-
the pivot columns of A transformed into RREF would not work. The only purpose of
row reducing A here was to figure out which columns of A had pivot positions. Also,
this is just one basis for Col A— there are many others.

To find a basis for Null A we need to find solutions to the homogeneous equation. So
we need to row reduce, which we have fortunately already done above. Putting the
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matrix all the way into RREF, we get

1 01 2
011 -1
000 O
000 O

Thus the solution set for the homogeneous equation consists of all vectors of the form

—1 -2
-1 1
1|3 + o | %4
0 1
So a basis for Null A is
-1 -2
-1 1
11’10
0 1

4. True or False: If A is an n X m matrix and B is an m X p matrix such that Col B =
Null A, then AB = 0.

A: True. Let x be any vector in RP. By the definition of multiplying a matrix by a
vector, Bx € Col B. Since we have assumed Col B = Null A, this means Bx € Null A.
So by definition of Null A, A(Bx) = 0. Thus (AB)x = 0. Since AB sends all vectors
to 0, AB is 0.

5. True or False: If A is a 2 x 10 matrix then dim Null A > 8.

A: True. Since A only has 2 rows, it has at most 2 pivot positions. Since the rank of
A is equal to the number of pivots, this means that the rank of A is at most 2. But
the rank of A and the dimension of the null space have to sum up to the number of
columns, which is 10. So dim Null A > 8.

6. True or False: If vy,..., vy, are a set of vectors that span R™ and T and S are linear
transformations from R™ to R? such that T'(v;) = S(v;) for all ¢ < m then S =T.

A: True. Let x be any vector in R™. Since vq,...,vy span R", x can be written
as a linear combination of vi,...,vy. Thus there exist scalars aq,...,a,, such that
X =a1vy+...+ amVm. So we have

T(x)=T(a1vi+ ...+ GmVm)
=a;T(vi)+ ...+ anT (Vi) since T is a linear transformation
=a15(v1)+ ...+ anS(vm) by the assumption in the problem statement

=S(avi+...+amvm) since S is a linear transformation

= S5(x)

Since T and S agree on all vectors in the domain, by definition T' = S.



