
Midterm Exam
Math 182, Fall 2021

Instructions: Answer each question in the space provided. If you run out of room, use the blank pages at
the end. You may consult a single, double-sided page of notes. You may not use a calculator, phone or
computer. If you believe there is a typo in a question, you may raise your hand to ask about it.

If you cannot figure out how to solve a problem, you may receive partial credit for solving an easier version
of the same problem, as long as you state clearly that that’s what you are doing.

Advice: The exam consists of five problems, plus one extra credit problem. Note that the last two problems
are worth more points than the others, so if you are stuck on a problem early in the exam, it may be worth
setting it aside for a while to work on the later problems.

Name:

UID:

Question Points Score

1 6

2 9

3 8

4 15

5 12

6 0

Total: 50

Don’t turn over this page until you are told to do so.



Math 182, Fall 2021 Page 2 Midterm Exam

Question 1: Big-O and Friends (6 points)
State whether each of the following is true or false. If true, briefly explain why. If false, give a
counterexample. You do not need to prove that your answers are correct.

(a) If f, g, h, k : N → N are functions such that f ∈ Θ(g), h ∈ Θ(k), and for all n ∈ N, f(n) > h(n)
and g(n) > k(n) then f(n)− h(n) ∈ O(g(n)− k(n)).

(b) For any functions f, g : N→ N, max(f(n), g(n)) ∈ Θ(f(n) + g(n)).



Math 182, Fall 2021 Page 3 Midterm Exam

Question 2: Find the Running Time (9 points)
Find the running time of each of the algorithms below. You should show your work, but you do not
need to prove that your answers are correct.

(a) This algorithm does nothing useful.

Foo(n):
if n > 10:

Foo(ceiling(n/3))
Foo(ceiling(n/3))
Foo(ceiling(n/3))

(b) This algorithm removes all negative numbers from an array by going through the entries in the
array one-by-one. When it encounters a negative number, it removes it from the array and moves
everything after it down by one position.

RemoveNegatives(A):
i = 1
while i ≤ length(A):

if A[i] < 0:
Delete(A, i)

else:
i = i + 1

Delete(A, i):
for j = i, i + 1, ..., length(A) - 1:

A[i] = A[i + 1]
decrease length(A) by one

(c) This algorithm is a modification of mergesort. To sort a list it first recursively sorts the left and
right halves of the list. To merge the two sorted halves together, it concatenates them and then
calls Mergesort on the resulting list.

SillySort(A):
n = length(A)
if n = 0 or n = 1:

return A
left = SillySort(A[1...floor(n/2)])
right = SillySort(A[floor(n/2) + 1...n])
B = new list whose fist half is left and whose second half is right
return Mergesort(B)



Math 182, Fall 2021 Page 4 Midterm Exam

Question 3: Greedy Prefix Sums (8 points)
Given an array A, say that a prefix sum of A is any number of the form A[1] + A[2] + . . . + A[i] for
some i between 1 and the length of A. Suppose you are trying to solve the following problem: given a
list of integers x1, x2, . . . , xn and a natural number m > 1, check whether it is possible to put x1, . . . , xn
into an array in some order such that no prefix sum of the array is divisible by m.

Example. If the list is 1, 2, 3, 4 and m = 3 then it is possible since the prefix sums of [1, 3, 4, 2] are
1, 4, 8, 10 and none of these are divisible by 3. If the list is 1, 2, 3, 4 and m = 2 then it is not possible
since the sum of all the numbers is divisible by 2.

You come up with the following greedy algorithm to solve this problem. Start with an empty array.
At each step, look for a number which is still in the list and which, when added to the array built so
far, does not make the sum divisible by m. If such a number exists then remove the first such number
from the list and add it to the end of the array. If no such number exists, then declare that there is no
solution. In pseudocode:

Check(X, m):
A = new empty array
while X is not empty:
if there is x in X such that sum(A) + x is not divisible by m:
remove the first such x from X and add it to the end of A

else:
return False

return True

Is this algorithm correct? If so, prove that it is correct. If not, give an example of an input on which it
is incorrect.



Math 182, Fall 2021 Page 5 Midterm Exam

Question 4: How Many Paths? (15 points)
A path through an n × n grid is a sequence of squares in the grid such that each square is either
horizontally or vertically adjacent to the previous square. A path is called increasing if each square is
either to the right of or above the previous square in the path.

Suppose you are given an n× n grid where some squares have been marked as blocked. You want to
know many increasing paths there are in the grid which start in the bottom left corner, end in the upper
right corner and do not contain any blocked squares.

Example. Two grids are shown below, with blocked squares filled in with black. In the first grid, there
are exactly 5 increasing paths from the bottom left corner to the upper right corner. In the second grid,
there are none.

Assume that the input comes in the following format: A is an n× n array such that A[i, j] records
whether the square in the ith row and jth column of the grid is blocked. In particular, assume A[i,
j] is 0 if the square is blocked and 1 otherwise. Also assume that (1, 1) corresponds to the square in
the bottom left of the grid, so increasing i and j corresponds to going up and to the right in the grid,
respectively.

We will use dynamic programming to solve this problem. Define P (i, j) to be the number of increasing
paths which start at square (1, 1), end at square (i, j) and do not contain any blocked squares. For the
questions below, you do not need to prove your answers are correct nor do you need to show any work.

(a) Write a recursive formula (i.e. update rule) for P (i, j).

P (i, j) =

(b) Give the base case(s) of the recursion.

(c) What is the running time of the resulting dynamic programming algorithm?



Math 182, Fall 2021 Page 6 Midterm Exam

Question 5: Search a Jumbled List (12 points)
You have decided to open up a bookstore. To make sure the books stay organized, every book is
tagged with a unique integer ID and you keep the books in sorted order according to their ID. However,
sometimes customers will pull a book off the shelf and put it back in a different location than they
found it in. Fortunately, they always put it close to where they originally found it and no book is ever
more than 2 spots away from its proper location. You would like a way to check whether a book with a
given ID is contained in your store.

Design an efficient algorithm to solve this problem. Assume you are given an array of integers, L,
corresponding to the ID numbers of the books in your store, and a number a, corresponding to the ID
of the book you are trying to find. You may assume that no number in L is more than 2 positions away
from where it would be if L was sorted in increasing order.

(a) Describe the main idea of your algorithm. You do not need to prove that your idea is correct.

(b) Show pseudocode to implement your algorithm. Note that if you run out of time to give pseudocode
but the idea you described in part (a) is correct, you will still receive most of the credit for this
problem.

(c) What is the running time of your algorithm? You do not need to show any work.



Math 182, Fall 2021 Page 7 Midterm Exam

Question 6: Extra Credit (1 point (bonus))
This problem is optional. If you find a correct solution, you will receive one point of extra credit.

Suppose that in the previous problem, instead of every book being at most 2 spots away from its correct
position, every book is at most log(n) spots away, where n is the total number of books. Find an
O(log(n)) time algorithm to solve this version of the problem. To receive credit for this problem you
just need to describe the main idea of your algorithm; you do not need to give pseudocode or prove that
your algorithm is correct.



Math 182, Fall 2021 Page 8 Midterm Exam

Use this page if you run out of space on any problem. Be sure to indicate on the original page for the
problem that your solution continues on a later page.



Math 182, Fall 2021 Page 9 Midterm Exam

Use this page if you run out of space on any problem. Be sure to indicate on the original page for the
problem that your solution continues on a later page.



Math 182, Fall 2021 Page 10 Midterm Exam

Use this page if you run out of space on any problem. Be sure to indicate on the original page for the
problem that your solution continues on a later page.


