
Final Exam Solutions
Math 182, Fall 2021

Instructions: Answer each question in the space provided. If you run out of room, use the blank pages
at the end. You may consult two double-sided pages of notes. You may not use a calculator, phone or
computer. If you believe there is a typo in a question, you may raise your hand to ask about it.

If you cannot figure out how to solve a problem, you may receive partial credit for solving an easier version
of the same problem, as long as you state clearly that that’s what you are doing.

Advice: I recommend that early on in the exam, you skim all the questions. If you find yourself stuck
on a question for a long time, try switching to a different question. For the algorithm design questions,
you will receive most of the points as long as your main idea is correct, even if your pseudocode is missing
or incorrect. So it may be a good idea to try to first solve and write main ideas for the algorithm design
questions and only start writing pseudocode after you have solved or gotten stuck on all of them. And if
you ever find yourself getting panicked or having trouble thinking productively about a question, take a
moment to take a deep breath and relax.

Name:

UID:

Question Points Score

1 15

2 2

3 3

4 10

5 10

6 12

7 12

8 12

9 12

10 12

11 0

12 0

Total: 100

Don’t turn over this page until you are told to do so.

Math 182, Fall 2021 Page 2 Final Exam

1 Short Answer

The following three questions are all True/False or short answer. No justification is required.

Question 1: True/False (15 points)

(a) For any function f : N→ N, f(n) ∈ O(f(n)2).
√

True © False

Solution: Since f takes values only in the natural numbers, f(n) ≤ f(n)2 for any n.

Common Mistakes: Some people thought the codomain of f was the positive real numbers
rather than the natural numbers and came up with counterexamples to the statement in
that case.

(b) Suppose you have a priority queue implemented using a binary heap and you perform a series of n
insert operations and n delete-min operations in such a way that the binary heap never contains
more than

√
n elements. The total running time of all 2n operations is O(n log(n)).

√
True © False

Solution: In a binary heap with m elements, insert and delete-min both take O(log(m))
time. Thus if the priority queue never has more than

√
n elements then each operation never

takes more than O(log(
√
n)) = O(log(n)) time. Since there are 2n total operations, the running

time is upper bounded by O(2n log(n)) = O(n log(n)).

Comment: It actually doesn’t matter that the size of the heap is never more than
√
n. If

the heap starts out empty and we perform a series of n insert operations and n delete-min
operations then its maximum possible size at any point is n (in the case where we do all
the insert operations first) and that is still small enough to imply that each operation takes
O(log(n)) time.

(c) If a directed graph can be topologically sorted then it has no cycles.
√

True © False

Solution: Suppose G is a directed graph and v1, v2, . . . , vn is a topological sort of the vertices
of G. Any cycle in G would at some point have to go from a vertex with a later position in
this ordering to a lower position in this ordering, but that violates the definition of topological
sort. Thus G has no cycles.

(d) Suppose you implement a hash table using external chaining. If the hash table contains n elements
and no chain has length more than O(log(n)) then checking whether the hash table contains a
given item takes O(log(n)) time in the worst case.
√

True © False

Math 182, Fall 2021 Page 3 Final Exam

Solution: Looking up an item in a hash table that uses external chaining consists of two steps:
first compute the hash of the given item and find the corresponding bucket in the hash table’s
array. Then look through the chain stored in that bucket, comparing each element of the chain
to the given item. The first step takes O(1) time and the running time of the second step
is proportional to the length of chain. So if all chains have length O(log(n)) then the total
running time is O(log(n)).

(e) Recall that the Independent Set problem asks whether a given graph has an independent set (a
set of vertices with no edges between them) larger than some given size and the Reachability
problem asks whether a given graph has a path between two given vertices. True or false: a
reduction of the Independent Set problem to the Reachability problem is a polynomial time
algorithm A that, when given a graph G and vertices s and t in G, produces a graph G′ and a
number m such that there is a path from s to t in G if and only if there is an indepndent set in G′

of size larger than m.

© True
√

False

Solution: The algorithm described in the problem is actually a reduction of Reachability
to Independent Set, not a reduction of Independent Set to Reachability.

Comment: Some people seemed to think that this question is false because P 6= NP .
While it is true that a reduction of Independent Set to Reachability would imply that
P = NP , the question was simply asking about the definition of “reduction.” If the statement
had used the correct definition of reduction then the answer would have been “True,” in spite
of the fact that the existence of such a reduction would imply P = NP .

Question 2: Topological Sort (2 points)
Find a topological sort of the following graph.

A

B C

D

E

Solution: There are several valid topological sorts of this graph:

1. DECAB

2. DEACB

3. DAECB

4. DEABC

5. DAEBC

Common Mistakes: There were no mistakes on this question. It is the only question on the
exam that everyone got completely correct.

Question 3: Minimum Cut (3 points)
Find a minimum s-t cut of the following graph and state its weight. Feel free to indicate the cut by
simply circling the vertices which are on the same side of the cut as s.

Math 182, Fall 2021 Page 4 Final Exam

s

A

B C

D E t

F

2

5

1

3

3

2

2

3 1

2
3

2

Solution: The minimum cut has weight 4 . There are two distinct minimum cuts.

s

A

B C

D E t

F

2

5

1

3

3

2

2

3 1

2
3

2

s

A

B C

D E t

F

2

5

1

3

3

2

2

3 1

2
3

2

Common Mistakes: Some people found a correct max flow, but did not correctly convert it
into a minimum cut. Some people thought that the weight of a cut was the sum of the weights of
the edges going out of the cut minus the sum of the weights of the edges coming into the cut.
However, the weight of a cut is defined as just the sum of the weights of the edges going out of
the cut.

Math 182, Fall 2021 Page 5 Final Exam

2 Correct or Not?

Both of the following two questions contain a description of a problem and an algorithm that is supposed to
solve that problem. For each question you should determine whether or not the algorithm is correct. If it is
correct, prove it. If it is not correct, provide an example of an input on which it fails to find the correct
answer.

Question 4: Find a MAST (10 points)
Problem. If G = (V,E) is a weighted, connected, undirected graph, a set E′ ⊆ E is called an almost
spanning tree of G if (V,E′) is connected and |E′| = |V |. The weight of an almost spanning tree is
defined in the same way as the weight of a spanning tree—as the sum of the weights of the edges in E′.

Input. A connected graph G = (V,E) such that |E| ≥ |V |.
Output. An almost spanning tree of G whose weight is as small as possible.

Algorithm. First use Prim’s algorithm to find a minimum spanning tree of G and then add to it the
lightest edge in G that it does not yet contain.

This algorithm is:
√

Correct. © Not correct.

Proof of correctness or counterexample.

Solution: There are technically two things to show here: first, that the algorithm returns an almost
spanning tree and second, that the weight of the almost spanning tree it returns is no larger than
that of any other almost spanning tree of G. The first of these is straightforward. The second is a
bit trickier; one way to prove it is to show that if T is a spanning tree and E′ is an almost spanning
tree then E′ can always be broken into a spanning tree of G plus an edge that is not in T . The
complete proof is below.

Proof. First note that every spanning tree of G is connected and has exactly |V | − 1 edges, so if we
add one edge to a spanning tree we get a connected set of exactly |V | edges. Thus the algorithm
does return an almost spanning tree. It remains to prove that the almost spanning tree it returns
has minimum weight.

Let T be the MST found by Prim’s algorithm and let e be the lightest edge not in T . Let E′ be any
almost spanning tree of G. Since |E′| > |V | − 1, E′ must contain a cycle. Since T does not contain
a cycle, there must be at least one edge on this cycle that is not in T . Let e′ be such an edge.

Now let’s make a couple of observations. First, since e′ is not in T and e is the lightest edge not in
T , w(e′) ≥ w(e). Second, since removing one edge from a cycle does not disconnect a connected
graph, E′ − {e′} is connected. Since |E′ − e′| = |V | − 1, E′ must actually be a spanning tree of G
and therefore w(E′ − {e′}) ≥ w(T). Combining these two observations we have that

w(E′) = w(E′ − e′) + w(e′) ≥ w(T) + w(e).

In other words, the weight of E′ is at least the weight of the almost spanning tree returned by the
algorithm.

Comment: Another way to prove that the set returned by the algorithm is correct is to first
show by induction that on each step of Prim’s algorithm, the current set of edges is contained in

Math 182, Fall 2021 Page 6 Final Exam

some minimum almost spanning tree and then show that the final edge added by the algorithm
above maintains this property.

Common Mistakes: Many people stated that the algorithm is correct, but there were very
few correct proofs. Relatively few of these proofs contained statements that were actually false,
however most contained at least one major unproven assumption.

The most common of these was to assume that there is some minimum almost spanning tree that
contains a minimum spanning tree. However, this assumption is not at all obvious and is, in fact,
most of what needs to be proved. A slightly more extreme form of this mistake was to assume
that for every minimum spanning tree T , there is some minimum almost spanning tree which
consists of T plus one extra edge. Again, this assumption is true, but is not obvious (and making
it renders the proof pretty much trivial).

There were also several proofs that claimed to use induction but never actually used the inductive
hypothesis.

Math 182, Fall 2021 Page 7 Final Exam

Question 5: Triple Matching (10 points)
Problem. An undirected graph G = (V,E) is called strongly tripartite if V can be partitioned into
three sets V1, V2, V3 such that every edge in E either has one endpoint in V1 and one endpoint in V2 or
one endpoint in V2 and one endpoint in V3. The partition (V1, V2, V3) is called a tripartition of G.

Suppose G = (V,E) is a strongly tripartite graph with tripartition (V1, V2, V3). A triple matching of G
is a set M ⊆ V 3 of triples of vertices (i.e. lists of three vertices) in G such that no vertex occurs more
than once in M and for each (u, v, w) ∈M , u ∈ V1, v ∈ V2, w ∈ V3 and (u, v), (v, w) ∈ E.

Input. A strongly tripartite graph G = (V,E) and a tripartition (V1, V2, V3) of G.
Output. The size of the largest possible triple matching of G.

Algorithm. Create a network G′ as follows. Start with V and add two new vertices, s and t. For each
edge (u, v) in E such that u ∈ V1 and v ∈ V2, add a directed edge (u, v) to G′ with weight 1. Similarly,
for each edge (u, v) in E such that u ∈ V2 and v ∈ V3, add a directed edge (u, v) to G′ with weight 1.
Also add a directed edge of weight 1 from s to each vertex in V1 and from each vertex in V3 to t. Then
use the Ford-Fulkerson algorithm to find a maximum flow on G′. Return the size of this flow as the size
of the largest possible triple matching in G.

Example. Shown below is a graph G, the network G′ formed from it as described above, and a triple
matching of G.

s t

V1 V2 V3 Assume every edge has weight 1. The largest triple
matching has size 2

This algorithm is:

© Correct.
√

Not correct.

Proof of correctness or counterexample.

Solution: Consider the following strongly tripartite graph, G.

V1 V2 V3

If we convert this to a network G′ as described above then we get the following graph.

s t

1

1

1

1 1

1 1

1

The maximum size of any tripartite matching in G is 1, but the maximum flow in G′ has size 2.

Math 182, Fall 2021 Page 8 Final Exam

Comment: Even though the algorithm described above does not solve the triple matching
problem correctly, there is a modification of it which does work. Namely, create the network G′

as above, but instead of merely giving a weight of 1 to every edge in G′, also give every vertex a
capacity of 1. See the homework 7 solutions for a description of how to efficiently solve the max
flow problem when there are vertex capacities.

Comment: Instead of the counterexample in the solution above, many people gave a more
complicated counterexample. For instance, several people drew the following graph:

This is a valid counterexample, but the 4 isolated nodes are not necessary.

Common Mistakes: A number of people claimed the algorithm is correct and tried to provide
a proof. The most common mistake in these proofs was claiming that in any flow, at most one
unit of flow goes through each vertex. However, this is not correct: it is perfectly valid to have a
flow where every edge has weight 1 but some vertices have more than one unit of flow entering.
The reason this is not an issue in the case of bipartite graphs is that each vertex has either at
most one edge going to it or at most one edge leaving it, and this does force every vertex (other
than the sink) to have at most one unit of flow going through it.

Common Mistakes: A few people stated that the algorithm was not correct, but had incorrect
counterexamples. The most common mistake was to draw a graph G and claim that the maximum
flow in G′ is smaller than the size of the largest triple matching in G. However this is always false:
for any strongly tripartite graph G, the size of the largest triple matching of G is less than or
equal to the size of the maximum flow in G′.

Math 182, Fall 2021 Page 9 Final Exam

3 Algorithm Design

Each of the next 5 questions asks you to design an efficient algorithm to solve some problem. For each
problem, you should describe the main idea of your algorithm, give pseudocode for it and state its running
time. You should give a brief justification of the running time (1-2 sentences should usually suffice). You do
not need to provide a proof of correctness.

Partial credit. For each problem, you will receive at least 5 points (and sometimes more) if you give a
correct algorithm which runs in polynomial time. Incorrect algorithms may or may not receive partial credit,
depending on the details of the algorithm. Incorrect algorithms are more likely to receive partial credit if
you state that you know the algorithm is incorrect and give an example of an input on which it fails.

Question 6: Painted Penguin Prefix (12 points)
You are the proud owner of n penguins, which are arranged in a line. You hired someone to paint all the
penguins red, starting from penguin 1 and continuing in order until penguin n. However, the painter
you hired was interrupted in the middle of their job and only painted the first few penguins. You want
to find out how many of the penguins have already been painted. Design an efficient algorithm to solve
this problem. For full credit, your algorithm should run in O(log(n)) time.

Input. The number of penguins, n, and access to a function, red, which works as follows. For any i ≤ n,
red(i) returns True if and only if penguin i is painted red. You may assume this function runs in O(1)
time and that if red(i) returns False then so does red(j) for any j ≥ i.

Output. The largest number i such that red(i) returns True.

Main idea.

Solution: Use binary search. Look at the middle penguin in the list. If it’s red, recurse on the
right half of the list. If it’s not red then recurse on the left half of the list.

Pseudocode.

Solution: The usual pseudocode for binary search works with almost no changes.

FindPenguin(n):
i = 1, j = n

while i ≤ j:
mid = floor((i + j)/2)
if red(mid):
i = mid + 1

else:
j = mid - 1

return j

Running time.

Solution: Θ(log(n)). On every iteration of the loop we cut the length of the current range in half.
Thus there will be Θ(log(n)) iterations of the loop and since we do O(1) work per iteration, the
total running time is Θ(log(n)).

Math 182, Fall 2021 Page 10 Final Exam

Question 7: Filling in an Array (12 points)
Suppose you play the following game with your friend. Your friend thinks of an array A of n numbers,
which you will try to guess. To help you, your friend gives you a series of hints of the form “A[i] <
A[j]” or “A[i] > A[j]” (where 1 ≤ i < j ≤ n). After getting k such hints, you want to find an array
B of real numbers (not necessarily integers) such that each hint you received about A is also true of B.
Design an efficient algorithm to solve this problem.

Example. Suppose that n = 5, k = 4 and the hints you receive are A[1] > A[2], A[1] < A[3], A[2]
< A[3], and A[4] < A[5]. Then one valid way to fill in B is [5.5, 5, 6, 7.2, 7.3].

Input. A number n and arrays L and G such that for each i ≤ n, L[i] contains a list of all hints of the
form “A[i] < A[j]” and G[i] contains a list of all hints of the form “A[i] > A[j].”

Output. A length n array B of real numbers such that for each hint of the form “A[i] < A[j],” B
satisfies B[i] < B[j] and for each hint of the form “A[i] > A[j],” B satisfies B[i] > B[j].

Main idea.

Solution: Create a directed graph whose vertex set is {1, 2, . . . , n} and such that there is an edge
from i to j if you have been given a hint of the form A[i] < A[j] or A[j] > A[i]. Because the
inequalities are strict, this graph will always be a DAG (a loop in the graph would correspond to a
situation where you have been given hints of the form A[i1] < A[i2], A[i2] < A[i3], . . . , A[in < A[i1],
which taken together are contradictory). Find a topological sort of this graph and for each i, set
B[i] to be the position of i in the topological sort.

Pseudocode.

Solution:

FillArray(L, G, n):
H = new directed graph with vertex set {1, 2, . . . , n} and no edges
for i = 1, 2, . . . , n:

for j in L[i]:
add edge (i, j) to H

for j in G[i]:
add edge (j, i) to H

C = TopologicalSort(H)
B = new empty array of length n
for i = 1, 2, . . . , n:

B[C[i]] = i

Running time (in terms of both n and k).

Solution: Θ(n + k). The graph H has n vertices and k edges, so creating H takes Θ(n + k) time,
as does running the topological sort algorithm from class on H. Filling in the array B takes O(n)
time. So the total running time is Θ(n + k + n + k + n) = Θ(n + k).

Comment: I originally intended this to be a problem about greedy algorithms, but it turns out
that writing down a correct and efficient greedy algorithm for this problem is pretty tricky.

Math 182, Fall 2021 Page 11 Final Exam

Comment: It is natural to ask whether there is still an efficient algorithm to solve this problem
if the hints can also have the form A[i] ≤ A[j] or A[i] ≥ A[j] (i.e. if the inequalities are not
necessarily strict). You can no longer use topological sort because the resulting graph will not
always be a DAG (e.g. it is valid to have both A[1] ≤ A[2] and A[1] ≥ A[2] as hints, which
corresponds to having edges (1, 2) and (2, 1) in the graph). It turns out there is also a Θ(n + k)
time solution to this problem, though it relies on ideas we did not learn about in class.

In directed graphs, the relation “there is a path from u to v and also a path from v to u” is an
equivalence relation on vertices. The equivalence classes of this equivalence relation are called
strongly connected components of the graph (in other words, a strongly connected component of a
graph is a maximal set of vertices such that for any ordered pair of vertices in the set, there is a
path from the first vertex to the second vertex).

Now suppose G is a directed graph. Consider the directed graph G′ whose vertices consist of the
strongly connected components of G, with an edge from one strongly connected component to
another any time there is an edge from some vertex in the first component to some vertex in the
second component. It is possible to show that this graph is always a DAG. In other words, every
directed graph can be decomposed into strongly connected components connected by a DAG.

Let’s return to the problem of filling in the array B when the hints do not have to be strict
inequalities. We mentioned above that this case seems tricky because the graph corresponding
to the hints may not be a DAG. However, note that if i and j are part of the same strongly
connected component of the graph then this implies A[i] = A[j]. Thus the problem of filling in the
array B can be reduced to the problem of picking a number to assign to each strongly connected
component. But we are then back to the case of a DAG, so we can use topological sort.

There is just one possible problem with this algorithm: how do we find the strongly connected
components of the graph? Finding strongly connected components in directed graphs is trickier
than finding connected components in undirected graphs, but it turns out that there is an
algorithm (using DFS and postvisit numbers) which does it in Θ(|V |+ |E|) time (see either of
the course textbooks for more details on how this works).

Math 182, Fall 2021 Page 12 Final Exam

Question 8: Road Trip (12 points)
You have decided to drive from Los Angeles to Boston for winter break and you want to figure out which
hotels you should stay at along the way. Assume that there is only one highway from LA to Boston,
that it is exactly n miles long and that there is exactly one hotel at each mile along this highway. Each
day, you can drive at most k miles and then, if you are not yet at Boston, you must stop at a hotel for
the night. Given the price of staying at each hotel for one night, you want to find the minimum possible
total amount of money that you can spend on hotels during your trip.

Example. Suppose n = 10, k = 3 and the costs of the hotels, in order, are 3, 1, 4, 5, 2, 3, 7, 8, 1 (note that
there are only 9 hotels because after you have driven 10 miles, you have reached Boston and do not
need a hotel). Then the minimum total cost is 7, which can be obtained by staying at the hotels at
miles 2, 5, 6 and 9.

Input. An array A such that for each i < n, A[i] contains the cost to stay for one night at the hotel at
mile i along the highway.

Output. The least number c such that there are indices i1 < i2 < . . . < il (indicating which hotels to
stay at) which satisfy the two following constraints.

• i1 − 0, i2 − i1, i3 − i2, . . ., il − il−1, n− il are all less than or equal to k (i.e. you don’t drive more
than k miles per day, including the first and last days).

• A[i1] + A[i2] + . . . + A[il] = c (i.e. the total cost to stay at these hotels is c).

Note that you only need to return the minimum cost c and not the indices i1, . . . , il.

Hint. There is a dynamic programming solution with subproblems C(i) defined as the minimum cost to
travel the first i miles. You are free to use a different solution, however.

Main idea.

Solution: There were two main approaches to this problem. Both used dynamic programming.

Solution 1. For each i ≤ n, define C(i) to be the cost to reach mile i on the highway. Then C(0) = 0
and for all i > 0 we have

C(i) = min{C(j) + A[j] | i− k ≤ j < i and j ≥ 0}.

We can calculate all C(i) using dynamic programming and return C(n) as the final answer.

Solution 2. For each i < n, define C(i) to be the cost to reach mile i and stay at the hotel at mile i.
Then C(0) = 0 and for all i > 0 we have

C(i) = A[i] + min{C(j) | i− k ≤ j < i and j ≥ 0}.

We can calculate all C(i) using dynamic programming and then return min{C(i) | n− k ≤ i < n}
as the final answer.

Pseudocode.

Solution:

Solution 1.

RoadTripCost(A, n, k):

Math 182, Fall 2021 Page 13 Final Exam

C = new array of length n + 1
C[0] = 0
for i = 1, 2, ..., n:
C[i] = min(C[j] + A[j] for j between max(0, i - k) and i - 1)

return C[n]

Solution 2.

RoadTripCost(A, n, k):
C = new array of length n + 1
C[0] = 0
for i = 1, 2, ..., n:
C[i] = A[i] + min(C[j] for j between max(0, i - k) and i - 1)

return min(C[i] for i between max(0, n - k, n - 1)

Running time (in terms of both n and k).

Solution: Θ(nk) (for both approaches). There are n subproblems and each one takes O(k) time to
solve.

Comment: There were a number of minor variations of the above algorithms. For example, in
the first solution you can immediately set C(i) = 0 for any i ≤ k and for the second solution, you
can immediately set C(i) = A[i] for any i ≤ k.

For the second solution, you can also first extend the length of A by one and set A[n] = 0 and
then just return C[n] at the end of the algorithm instead of having to take the minimum over the
last k elements.

Common Mistakes: One common mistake was to use an approach similar to the second solution
above, but fail to take the minimum over the last k miles at the end, and instead just return C[n].
There are two problems with this. First, A[n] is not defined so calculating C[n] does not make
sense. Second, even if A[n] were defined, this would not be the correct answer because the last
hotel you stay at can be in any of the last k miles; it does not need to be at mile n itself.

Common Mistakes: A few people tried a greedy approach to this problem. For example, it is
tempting to think that the following greedy approach might work: set i1 to be the location of the
cheapest hotel in the first k miles. Then set i2 to be the location of the cheapest hotel in the next
k miles after i1, and so on until you reach n. However, this doesn’t work. To see why, consider
the following example. Suppose n = 4, k = 2 and the prices of the hotels, in order, are 1, 2, 100.
In this case, the greedy algorithm will choose the hotels at miles 1 and 3, for a total cost of 101,
whereas the optimal solution is to just pick the hotel at mile 2, for a total cost of 2.

Math 182, Fall 2021 Page 14 Final Exam

Question 9: Graph with Unreliable Edges (12 points)
Suppose G = (V,E) is a directed graph and s, t ∈ V . Some of the edges in G have been marked as
unreliable. You want to know if there is a path from s to t in G that uses at most 2 unreliable edges.
Design an efficient algorithm to solve this problem.

Input. A directed graph G = (V,E), vertices s, t ∈ V and access to a function unreliable, such that
for any edge e ∈ E, unreliable(e) returns True if and only if e is an unreliable edge. You may assume
that this function runs in O(1) time.

Output. True if there is a path from s to t in G that uses at most 2 unreliable edges and False otherwise.

Main idea.

Solution: There are several valid solutions to this problem.

Solution 1. Assign a weight of 0 to every reliable edge and 1 to every unreliable edge and run
Dijkstra’s algorithm on the resulting weighted graph. Then check whether the distance from s to t
is less than or equal to 2.

If you want to avoid using edges with weight 0, you can also set each reliable edge to have weight 1
and each unreliable edge to have weight |E|+ 1 and check whether the distance from s to t is less
than or equal to 3|E|+ 2.

Solution 2. Make three copies of G and delete the unreliable edge from each copy then for each
unreliable edge, add an edge from the first copy to the second copy and the second copy to the third
copy. Use DFS or BFS to check if the any copy of t is reachable from the first copy of s.

More precisely, create a new graph G′ as follows. For every vertex v in V , add three vertices to G′,
v0, v1, v2. For each reliable edge (u, v) in G, add edges (u0, v0), (u1, v1), (u2, v2) to G′ and for each
unreliable edge (u, v), add edges (u0, v1) and (u1, v2) to G′. Then use DFS or BFS to check if any
of t0, t1, t2 are reachable from s0. The motivating idea of this solution, by the way, is that a vertex
vi in G′ corresponds to a vertex v in G which is reachable using exactly i unreliable edges.

Solution 3. See the solution to the second extra credit problem.

Pseudocode.

Solution:

Solution 1.

Weight(u, v):
if unreliable(u, v): return 1
else: return 0

UnreliableEdges(G = (V, E), s, t):
dist = Dijkstra(G, Weight, s, t)
if dist ≤ 2: return True
else: return False

Solution 2. There are (at least) two ways to turn the idea of the second solution into pseudocode.
One is to directly produce the modified graph G′ and then run DFS/BFS on it. The other is to
modify DFS or BFS so that running the modified algorithm on G is equivalent to running DFS on

Math 182, Fall 2021 Page 15 Final Exam

G′. Both approaches ar shown below.

UnreliableEdges(G = (V, E), s, t):
G’ = new graph with vertex set Vx{0, 1, 2} and no edges
for edge (u, v) in E:
if unreliable(u, v):
add edges ((u, 0), (v, 1)), ((u, 1), (v, 2)) to G’

else:
add edges ((u, 0), (v, 0)), ((u, 1), (v, 1)), ((u, 2), (v, 2)) to G’

if Reachable(G’, (s, 0), (t, 0)) or
Reachable(G’, (s, 0), (t, 1)) or Reachable(G’, (s, 0), (t, 2)):

return True
else:
return False

Explore(G, v, visited, visit_number):
if visit_number ≤ 2:

visited[v, visit_number] = True
for u in neighbors(v):

if unreliable(v, u):
if not visited[u, visit_number + 1]:
Explore(G, u, visited, visit_number + 1)

else:
if not visited[u, visit_number]:
Explore(G, u, visited, visit_number)

UnreliableEdges(G = (V, E), s, t):
visited = new nx4 array of Booleans, initially all set to False
Explore(G, s, visited, 0)
if visited[t, 0] or visited[t, 1] or visited[t, 2]: return True
else: return False

Running time.

Solution:

Solution 1. Θ(|V | log |V |+ |E|). Essentially just the cost of running Dijkstra’s algorithm on G (plus
the time it takes to compute edge weights, but computing the weight of a single edge takes constant
time and Dijkstra’s algorithm will check the weight of each edge exactly once).

Solution 2. Θ(|V |+ |E|). The new graph G′ has 3|V | vertices and at most 3|E| edges, so running
DFS/BFS on it will take Θ(3|V |+ 3|E|) = Θ(|V |+ |E|) time.

Common Mistakes: A lot of people attempted to modify DFS or BFS to solve this problem,
but did so incorrectly. The most common strategy was to run DFS and keep a counter for each
vertex indicating how many unreliable edges were used to reach that vertex. Unfortunately, this
just tells you whether the path from s to t in the DFS tree uses at most 2 unreliable edges, rather

Math 182, Fall 2021 Page 16 Final Exam

than whether some path uses at most 2 unreliable edges.

Some people realized this problem and attempted to fix it, but did so incorrectly. Other people
made a mistake when implementing this strategy, giving algorithms that did not even correctly
report how many unreliable edges there are in the path from s to t in the DFS tree. One common
mistake of this form was to keep a single global counter of unreliable edges rather than having a
separate counter for each vertex. But this just counts the total number of unreliable edges in the
DFS tree, which has little to do with the number of unreliable edges on paths between s and t.

Comment: By far the most common correct solution was to use Dijkstra’s algorithm as described
above. There were also several (correct) variations of solution 2, some of them fairly complicated.
One person came fairly close to the algorithm described in the solution to the extra credit problem.

Math 182, Fall 2021 Page 17 Final Exam

Question 10: Small Diameter Partition (12 points)
The diameter of an array of numbers is the difference between the largest element and the smallest
element in the array. Note that if the array is sorted in increasing order then this is just the difference
between the last and first elements.

Suppose A is an array of numbers, and k > 0. The diameter of a partition of A into k subarrays is the
maximum diameter of any of those subarrays. Note that a partition of A into k subarrays is equivalent
to a choice of k numbers 1 = i1 < i2 < . . . < ik indicating the beginning of each subarray (so the first
subarray consists of A[1], A[2], . . . , A[i2 − 1], the second consists of A[i2], A[i2 + 1], . . . , A[i3 − 1] and so
on). Furthermore, note that if A is sorted in increasing order then the diameter of the first subarray is
A[i2 − 1]−A[i1], the diameter of the second subarray is A[i3 − 1]−A[i2], etc.

You want to design an efficient algorithm to solve the following problem: given a length n array of
integers, A, sorted in increasing order and a number k > 0, find the minimum diameter of any partition
of A into exactly k subarrays.

Example. Suppose A = [1, 5, 6, 8, 13, 15] and k = 3. The minimum possible diameter of any
partition of A into k subarrays is 3 and one partition with this diameter is [1], [5, 6, 8], [13, 15]
(in other words, i1 = 1, i2 = 2, i3 = 5).

Input. A length n array A of integers, sorted in increasing order, and a positive integer, k.

Output. The minimum possible diameter of any partition of A into k subarrays. In other words, the
minimum possible value of max(A[n]−A[ik], A[ik − 1]−A[ik−1], . . . , A[i2 − 1]−A[i1]) over all choices
of indices 1 = i1 < i2 < . . . < ik ≤ n.

Main idea.

Solution: Use dynamic programming. For any 0 ≤ i ≤ n and 0 ≤ l ≤ k, define D(i, l) to be the
smallest diameter of any partition of the first i entries of A into exactly l subarrays. Then we have
the recursive formula

D(i, l) = min{max(D(j, l − 1), A[i]−A[j + 1]) | 0 ≤ j < i}

and base cases

D(i, 0) =

{
0 if i = 0

∞ if i > 0
and D(0, l) =∞ for all l > 0

and the answer to the original problem is D(n, k).

Pseudocode.

Solution:

MinDiameter(A, n, k):
D = new (n + 1)x(k + 1) array
D[0, 0] = 0
for i = 1, 2, ..., n:

D[i, 0] = ∞
for l = 1, 2, ..., k:

D[0, l] = ∞
for l = 1, 2, ..., k:

Math 182, Fall 2021 Page 18 Final Exam

for i = 0, 1, 2, ..., n:
D[i, l] = min(max(D[j, l - 1], A[i] - A[j + 1]) for 0 ≤ j < i)

return D[n, k]

Running time (in terms of both n and k).

Solution: Θ(n2k). There are (n + 1)(k + 1) total subproblems and they each take O(n) time to
solve (because to find D(i, l) we need to take the minimum of i values). If you want to be really
careful, filling in the base cases takes Θ(n+k) time and the running time of the rest of the algorithm
is proportional to

k∑
l=1

n∑
i=1

i =

n∑
i=1

k∑
l=1

i =

n∑
i=1

ki = k

n∑
i=1

i = k ·Θ(n2) = Θ(n2k).

Common Mistakes: Several people tried to give a greedy algorithm for this problem. It is
possible that there is a correct (and efficient) greedy algorithm for this problem, but nobody
found one successfully on this exam. Also, I considered several different greedy approaches to this
problem and did not find one that works.

Common Mistakes: A few people said that dynamic programming could be used to solve this
problem but did not describe a correct dynamic programming algorithm.

Comment: It may seem odd that we set D(0, l) =∞ for all l > 0. This is because the problem
says we have to break A into k subarrays and (implicitly) says that the subarrays all have to
be nonempty (e.g. the problem stipulates that i1 < i2 rather than i1 ≤ i2). But there is no way
to break an empty array into l > 0 nonempty subarrays, so D(0, l) must be ∞. Moreover, for
any i < l, we must have D(i, l) =∞ but this does not need to be set separately (it is handled
correctly by the recursive formula when i > 0).

Comment: There is a way to speed up the computation of D(·, ·) in the above algorithm so that
the algorithm runs in time Θ(nk) rather than Θ(n2k).

First, note that for j ≥ l− 1, D(j, l− 1) is a (not necessarily strictly) increasing function of j (i.e.
as we make j bigger, D(j, l − 1) either stays the same or increases). Second, note that for a fixed
i ≥ l, A[i]−A[j + 1] is a (not necessarily strictly) decreasing function of j.

Together, these two observations imply that for a fixed l and i ≥ l, as we increment j from l − 1
to i, max(D(j, l − 1), A[i]−A[j + 1]) first decreases (as long as A[i]−A[j + 1] is the dominant
term in the maximum) and then increases (after D(j, l − 1) becomes the dominant term). The
minimum is the point at which it switches from decreasing to increasing. Furthermore, since
A[i + 1] − A[j + 1] is always at least as large as A[i] − A[j + 1], this minimum value of j can
only increase as i increases (the D(j, l − 1) term is independent of i and the A[i]−A[j + 1] term
increases with i, so the point where the former term becomes dominant can only increase).

This has two important consequences for our algorithm. First, to find the optimal value of

Math 182, Fall 2021 Page 19 Final Exam

j when computing D(i, l) we can start from j = l − 1 and keep increasing j until we see
max(D(j, l − 1), A[i]−A[j + 1]) start to increase (which means the D(j, l − 1) term has started
to dominate). The point just before it started to increase is the optimal value of j. Second, when
computing D(i + 1, l), instead of starting again from j = h− 1, we can start from the value of
j that was optimal for D(i, l). Thus for each l, we can keep track of a single variable j and for
each i we increment j until we find the minimum value of max(D(j, l− 1), A[i]−A[j + 1]). Then
when computing D(i + 1, l) we can start from the value we left off with when looking at D(i, l)
rather than starting over from j = l − 1.

Here’s some pseudocode to illustrate this.

MinDiameter(A, n, k):
D = new (n + 1)x(k + 1) array
D[0, 0] = 0
for i = 1, 2, ..., n:
D[i, 0] = ∞

for l = 1, 2, ..., k:
for i = 0, 1, ..., l - 1:
D[i, l] = ∞

j = l - 1
for i = l, l + 1, ..., n:

while j + 1 < i and max(D[j + 1, l - 1], A[i] - A[j + 2])
≤ max(D[j, l - 1], A[i] - A[j + 1]):

j = j + 1
D[i, l] = max(D[j, l - 1], A[i] - A[j + 1])

return D[n, k]

Note that in the main for loop of the above algorithm, the amount of work we do is proportional
to the number of times we increment i and j. But for each value of l, we can increment j at most
n times and i at most n times. Thus for each value of l we do O(2n) = O(n) work. Since there
are k possible values of l, this implies that the total running time is O(nk).

Math 182, Fall 2021 Page 20 Final Exam

4 Extra Credit

The following two questions are extra credit. They are more challenging than the rest of the problems and
are worth relatively few points, so I recommend that you only attempt them if you have finished the rest of
the exam. For these questions, you do not need to provide pseudocode or an analysis of the running time,
just the main idea of your algorithm.

Question 11: Faster Partitions (2 points (bonus))
Suppose that in question 10 the entries in A are all positive integers which are less than n2. Show how
to solve the problem in O(n log(n)) time in this case.

Solution: First note that if we are given a number C, there is a greedy algorithm which runs in
O(n) time and checks whether there is a partition of A into k subarrays with diameter at most
C. This algorithm works as follows: first it sets i1 = 1 and finds the largest i2 > i1 such that
A[i2 − 1]−A[i1] ≤ C. Then it finds the largest i3 > i2 such that A[i3 − 1]−A[i2] ≤ C. And so on.
At the end of this process, check whether A[n]−A[ik] ≤ C. If so then the algorithm has found a
partition with k subarrays and diameter at most C. If not, then there is no such partition.

Now note that if all entries in A are integers between 1 and n2 then the diameter of any subarray of
A is an integer between 0 and n2. Thus the only possible values of the diameter of a partition of A
into k subarrays are the integers between 0 and n2. And for any given integer, we can check in O(n)
time whether there is a partition with diameter less than or equal to that integer. So we can use
binary search to find the least integer C such that there is a partition of A into k subarrays with
diameter at most C (pretty much identical to the penguins problem) and this C is the answer to
the original problem.

The binary search needs to run for O(log(n2)) = O(log(n)) iterations and on each iteration we run
the greedy algorithm, which takes O(n) time. Thus the total running time is O(n log(n)).

Comment: Nobody solved this problem correctly.

Question 12: More Unreliable Edges (2 points (bonus))
Suppose that in the question 9, instead of being allowed to use at most 2 unreliable edges, you can use
at most k unreliable edges. Describe an algorithm that runs in time Θ(|V |+ |E|) no matter what k is.
You may assume that the graph is undirected rather than directed.

Solution: First remove all unreliable edges from G and run DFS (or BFS) to find the connected
components. Then create a new graph G′ whose vertices are the connected components of G and
where there is an edge (A,B) whenever there is an unreliable edge from some vertex in A to some
vertex in B. Run BFS on this graph to check whether the connected component containing t is
reachable from the connected component containing s using at most k edges.

Each step of this algorithm (removing the unreliable edges, finding the connected components,
creating G′, and running BFS on G′) all take O(|V | + |E|) time, so the entire algorithm runs in
O(|V |+ |E|) time (no matter what k is).

Comment: Nobody solved this problem correctly either . Some people claimed that their
solution to problem 9 also solved this problem, but in all such cases the solution to problem 9
was either wrong or had running time slower than Θ(|V |+ |E|).

