Final Exam
Math 182, Fall 2021

INSTRUCTIONS: Answer each question in the space provided. If you run out of room, use the blank pages
at the end. You may consult two double-sided pages of notes. You may not use a calculator, phone or
computer. If you believe there is a typo in a question, you may raise your hand to ask about it.

If you cannot figure out how to solve a problem, you may receive partial credit for solving an easier version
of the same problem, as long as you state clearly that that’s what you are doing.

ADVICE: I recommend that early on in the exam, you skim all the questions. If you find yourself stuck
on a question for a long time, try switching to a different question. For the algorithm design questions,
you will receive most of the points as long as your main idea is correct, even if your pseudocode is missing
or incorrect. So it may be a good idea to try to first solve and write main ideas for the algorithm design
questions and only start writing pseudocode after you have solved or gotten stuck on all of them. And if
you ever find yourself getting panicked or having trouble thinking productively about a question, take a
moment to take a deep breath and relax.

Name:

UID:

Question | Points | Score

1 15

2

3

10

10

12

12

12

© |00 [| O | O | =W

12

12
0
0

—_
o

—_
—_

—_
\)

Total: 100

Don’t turn over this page until you are told to do so.

Math 182, Fall 2021 Page 2 Final Exam

1 Short Answer

The following three questions are all True/False or short answer. No justification is required.
Question 1: True/False (15 points)
(a) For any function f: N = N, f(n) € O(f(n)?).
O True (O False

(b) Suppose you have a priority queue implemented using a binary heap and you perform a series of n
insert operations and n delete-min operations in such a way that the binary heap never contains
more than \/n elements. The total running time of all 2n operations is O(nlog(n)).

O True (O False
(c) If a directed graph can be topologically sorted then it has no cycles.
O True (O False

(d) Suppose you implement a hash table using external chaining. If the hash table contains n elements
and no chain has length more than O(log(n)) then checking whether the hash table contains a
given item takes O(log(n)) time in the worst case.

O True (O False

(e) Recall that the INDEPENDENT SET problem asks whether a given graph has an independent set (a
set of vertices with no edges between them) larger than some given size and the REACHABILITY
problem asks whether a given graph has a path between two given vertices. True or false: a
reduction of the INDEPENDENT SET problem to the REACHABILITY problem is a polynomial time
algorithm A that, when given a graph G and vertices s and ¢ in G, produces a graph G’ and a
number m such that there is a path from s to ¢ in G if and only if there is an indepndent set in G’
of size larger than m.

O True (O False

Question 2: Topological Sort (2 points)
Find a topological sort of the following graph.

P

Topological Sort:

Question 3: Minimum Cut (3 points)
Find a minimum s-t cut of the following graph and state its weight. Feel free to indicate the cut by
simply circling the vertices which are on the same side of the cut as s.

3
/_\ 3

9 D E
\/

P
s\l
E B

Math 182, Fall 2021 Page 3 Final Exam

2 Correct or Not?

Both of the following two questions contain a description of a problem and an algorithm that is supposed to
solve that problem. For each question you should determine whether or not the algorithm is correct. If it is
correct, prove it. If it is not correct, provide an example of an input on which it fails to find the correct
answer.

Question 4: Find a MAST (10 points)
Problem. If G = (V, E) is a weighted, connected, undirected graph, a set E’ C E is called an almost
spanning tree of G if (V, E’) is connected and |E’| = |V|. The weight of an almost spanning tree is
defined in the same way as the weight of a spanning tree—as the sum of the weights of the edges in E’.

Input. A connected graph G = (V, E) such that |E| > |V].
Output. An almost spanning tree of G whose weight is as small as possible.

Algorithm. First use Prim’s algorithm to find a minimum spanning tree of G and then add to it the
lightest edge in G that it does not yet contain.

This algorithm is:
(O Correct. (O Not correct.

Proof of correctness or counterexample.

Math 182, Fall 2021 Page 4 Final Exam

Question 5: Triple Matching (10 points)
Problem. An undirected graph G = (V, E) is called strongly tripartite if V' can be partitioned into
three sets V1, Vs, V3 such that every edge in F either has one endpoint in V; and one endpoint in V5 or
one endpoint in V5 and one endpoint in V3. The partition (V7, Vs, V3) is called a tripartition of G.

Suppose G = (V, E) is a strongly tripartite graph with tripartition (Vi, Vs, V3). A triple matching of G
is a set M C V3 of triples of vertices (i.e. lists of three vertices) in G such that no vertex occurs more
than once in M and for each (u,v,w) € M, u e Vi, v € Vo, w € V3 and (u,v), (v,w) € E.

Input. A strongly tripartite graph G = (V, E) and a tripartition (V7, Vo, V3) of G.
Output. The size of the largest possible triple matching of G.

Algorithm. Create a network G’ as follows. Start with V' and add two new vertices, s and ¢. For each
edge (u,v) in E such that u € V; and v € V3, add a directed edge (u,v) to G’ with weight 1. Similarly,
for each edge (u,v) in E such that u € V5 and v € V3, add a directed edge (u,v) to G’ with weight 1.
Also add a directed edge of weight 1 from s to each vertex in V; and from each vertex in V3 to t. Then
use the Ford-Fulkerson algorithm to find a maximum flow on G’. Return the size of this flow as the size
of the largest possible triple matching in G.

Ezample. Shown below is a graph G, the network G’ formed from it as described above, and a triple
matching of G.

O
O O O

o

|41 Vs V3 Assume every edge has weight 1. The largest triple
matching has size 2

This algorithm is:
(O Correct. () Not correct.

Proof of correctness or counterexample.

Math 182, Fall 2021 Page 5 Final Exam

3 Algorithm Design

Each of the next 5 questions asks you to design an efficient algorithm to solve some problem. For each
problem, you should describe the main idea of your algorithm, give pseudocode for it and state its running
time. You should give a brief justification of the running time (1-2 sentences should usually suffice). You do
not need to provide a proof of correctness.

Partial credit. For each problem, you will receive at least 5 points (and sometimes more) if you give a
correct algorithm which runs in polynomial time. Incorrect algorithms may or may not receive partial credit,
depending on the details of the algorithm. Incorrect algorithms are more likely to receive partial credit if
you state that you know the algorithm is incorrect and give an example of an input on which it fails.

Question 6: Painted Penguin Prefix (12 points)
You are the proud owner of n penguins, which are arranged in a line. You hired someone to paint all the
penguins red, starting from penguin 1 and continuing in order until penguin n. However, the painter
you hired was interrupted in the middle of their job and only painted the first few penguins. You want
to find out how many of the penguins have already been painted. Design an efficient algorithm to solve
this problem. For full credit, your algorithm should run in O(log(n)) time.

Input. The number of penguins, n, and access to a function, red, which works as follows. For any ¢ < n,
red(i) returns True if and only if penguin i is painted red. You may assume this function runs in O(1)
time and that if red(i) returns False then so does red(j) for any j > i.

Output. The largest number ¢ such that red(z) returns True.

Main idea.

Pseudocode.

Running time.

Math 182, Fall 2021 Page 6 Final Exam

Question 7: Filling in an Array (12 points)
Suppose you play the following game with your friend. Your friend thinks of an array A of n numbers,
which you will try to guess. To help you, your friend gives you a series of hints of the form “A[i{] <
A[j1” or “Ali] > A[j]1” (where 1 <i < j < n). After getting k such hints, you want to find an array
B of real numbers (not necessarily integers) such that each hint you received about A is also true of B.
Design an efficient algorithm to solve this problem.

Example. Suppose that n = 5, k = 4 and the hints you receive are A[1] > A[2], A[1] < A[3], A[2]
< A[3], and A[4] < A[5]. Then one valid way to fill in B is [5.5, 5, 6, 7.2, 7.3].

Input. A number n and arrays L and G such that for each i < n, L[] contains a list of all hints of the
form “A[¢] < A[j1” and G[%] contains a list of all hints of the form “A[:] > A[j]1.”

Output. A length n array B of real numbers such that for each hint of the form “A[i] < A[j1,” B
satisfies B[i] < B[j] and for each hint of the form “A[¢] > A[j1,” B satisfies B[i] > B[j].

Main idea.

Pseudocode.

Running time (in terms of both n and k).

Math 182, Fall 2021 Page 7 Final Exam

Question 8: Road Trip (12 points)
You have decided to drive from Los Angeles to Boston for winter break and you want to figure out which
hotels you should stay at along the way. Assume that there is only one highway from LA to Boston,
that it is exactly n miles long and that there is exactly one hotel at each mile along this highway. Each
day, you can drive at most k miles and then, if you are not yet at Boston, you must stop at a hotel for
the night. Given the price of staying at each hotel for one night, you want to find the minimum possible
total amount of money that you can spend on hotels during your trip.

Ezample. Suppose n = 10, k = 3 and the costs of the hotels, in order, are 3,1,4,5,2,3,7,8,1 (note that
there are only 9 hotels because after you have driven 10 miles, you have reached Boston and do not

need a hotel). Then the minimum total cost is 7, which can be obtained by staying at the hotels at
miles 2, 5, 6 and 9.

Input. An array A such that for each i < n, A[i] contains the cost to stay for one night at the hotel at
mile ¢ along the highway.

Output. The least number ¢ such that there are indices i1 < io < ... < 4; (indicating which hotels to
stay at) which satisfy the two following constraints.

e iy — 0,19 — iy, i3 —i2, ..., 9 — i1, n — i; are all less than or equal to k (i.e. you don’t drive more
than k& miles per day, including the first and last days).

o Ali1] + Aliz] + ...+ Alij] = ¢ (i.e. the total cost to stay at these hotels is c¢).
Note that you only need to return the minimum cost ¢ and not the indices i1, ..., .

Hint. There is a dynamic programming solution with subproblems C(i) defined as the minimum cost to
travel the first ¢ miles. You are free to use a different solution, however.

Main idea.

Pseudocode.

Running time (in terms of both n and k).

Math 182, Fall 2021 Page 8 Final Exam

Question 9: Graph with Unreliable Edges (12 points)
Suppose G = (V, E) is a directed graph and s,t € V. Some of the edges in G have been marked as
unreliable. You want to know if there is a path from s to ¢ in G that uses at most 2 unreliable edges.
Design an efficient algorithm to solve this problem.

Input. A directed graph G = (V, E), vertices s,t € V and access to a function unreliable, such that
for any edge e € E, unreliable(e) returns True if and only if e is an unreliable edge. You may assume
that this function runs in O(1) time.

Output. True if there is a path from s to t in G that uses at most 2 unreliable edges and False otherwise.

Main idea.

Pseudocode.

Running time.

Math 182, Fall 2021 Page 9 Final Exam

Question 10: Small Diameter Partition (12 points)
The diameter of an array of numbers is the difference between the largest element and the smallest
element in the array. Note that if the array is sorted in increasing order then this is just the difference
between the last and first elements.

Suppose A is an array of numbers, and k& > 0. The diameter of a partition of A into k subarrays is the
maximum diameter of any of those subarrays. Note that a partition of A into k& subarrays is equivalent
to a choice of k numbers 1 = i; < ig < ... < i indicating the beginning of each subarray (so the first
subarray consists of A[1], A[2],..., Afia — 1], the second consists of Afis], A[iz +1],..., Afis — 1] and so
on). Furthermore, note that if A is sorted in increasing order then the diameter of the first subarray is
Alig — 1] — A[i1], the diameter of the second subarray is Afig — 1] — A[ia], etc.

You want to design an efficient algorithm to solve the following problem: given a length n array of
integers, A, sorted in increasing order and a number k£ > 0, find the minimum diameter of any partition
of A into exactly k subarrays.

Ezxample. Suppose A = [1, 5, 6, 8, 13, 15] and k = 3. The minimum possible diameter of any
partition of A into k subarrays is 3 and one partition with this diameter is [1], [5, 6, 81, [13, 15]
(in other words, i1 = 1, is = 2, i3 = 5).

Input. A length n array A of integers, sorted in increasing order, and a positive integer, k.

Output. The minimum possible diameter of any partition of A into k& subarrays. In other words, the
minimum possible value of max(A[n| — Alix], Alix — 1] — Alig—1], ..., A[ia — 1] — Ali1]) over all choices
ofindices 1 =11 <ig < ... < i <n.

Main idea.

Pseudocode.

Running time (in terms of both n and k).

Math 182, Fall 2021 Page 10 Final Exam

4 Extra Credit

The following two questions are extra credit. They are more challenging than the rest of the problems and
are worth relatively few points, so I recommend that you only attempt them if you have finished the rest of
the exam. For these questions, you do not need to provide pseudocode or an analysis of the running time,
just the main idea of your algorithm.

Question 11: Faster Partitions (2 points (bonus))
Suppose that in question 10 the entries in A are all positive integers which are less than n?. Show how
to solve the problem in O(nlog(n)) time in this case.

Question 12: More Unreliable Edges (2 points (bonus))
Suppose that in the question 9, instead of being allowed to use at most 2 unreliable edges, you can use
at most k unreliable edges. Describe an algorithm that runs in time ©(|V| + |E|) no matter what k is.
You may assume that the graph is undirected rather than directed.

Math 182, Fall 2021 Page 11 Final Exam

Use this page if you run out of space on any problem. Be sure to indicate on the original page for the
problem that your solution continues on a later page.

Math 182, Fall 2021 Page 12 Final Exam

Use this page if you run out of space on any problem. Be sure to indicate on the original page for the
problem that your solution continues on a later page.

Math 182, Fall 2021 Page 13 Final Exam

Use this page if you run out of space on any problem. Be sure to indicate on the original page for the
problem that your solution continues on a later page.

Math 182, Fall 2021 Page 14 Final Exam

Use this page if you run out of space on any problem. Be sure to indicate on the original page for the
problem that your solution continues on a later page.

