Matrix Algebra Worksheet 2 Solutions

1. Find the inverse of the following matrix

$$\left[\begin{array}{rrrr} 1 & -2 & 3 \\ 0 & 4 & -5 \\ 0 & 0 & 6 \end{array}\right]$$

Solution: We will use Gaussian elimination. The matrix is already upper triangular, but recall that for finding inverses, this is not enough.

$$\begin{bmatrix} 1 & -2 & 3 & | & 1 & 0 & 0 \\ 0 & 4 & -5 & | & 0 & 1 & 0 \\ 0 & 0 & 6 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{6}R_3 \to R_3} \begin{bmatrix} 1 & -2 & 3 & | & 1 & 0 & 0 \\ 0 & 4 & -5 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1/6 \end{bmatrix}$$
$$\xrightarrow{R_2 + 5R_3 \to R_2} \begin{bmatrix} 1 & -2 & 3 & | & 1 & 0 & 0 \\ 0 & 4 & 0 & | & 0 & 1 & 5/6 \\ 0 & 0 & 1 & | & 0 & 0 & 1/6 \end{bmatrix}$$
$$\xrightarrow{R_1 - 3R_3 \to R_1} \begin{bmatrix} 1 & -2 & 0 & | & 1 & 0 & -1/2 \\ 0 & 4 & 0 & | & 0 & 1 & 5/6 \\ 0 & 0 & 1 & | & 0 & 0 & 1/6 \end{bmatrix}$$
$$\xrightarrow{\frac{1}{4}R_2 \to R_2} \begin{bmatrix} 1 & -2 & 0 & | & 1 & 0 & -1/2 \\ 0 & 4 & 0 & | & 0 & 1/6 \end{bmatrix}$$
$$\xrightarrow{\frac{1}{4}R_2 \to R_2} \begin{bmatrix} 1 & -2 & 0 & | & 1 & 0 & -1/2 \\ 0 & 1 & 0 & | & 0 & 1/4 & 5/24 \\ 0 & 0 & 1 & | & 0 & 0 & 1/6 \end{bmatrix}$$
So the inverse is
$$\begin{bmatrix} 1 & 0 & -1/2 \\ 0 & 1 & 0 & | & 1 & 1/2 & -1/12 \\ 0 & 1/4 & 5/24 \\ 0 & 0 & 1 & | & 0 & 0 & 1/6 \end{bmatrix}$$

2. (a) Find the inverse of the following matrix

Γ	1	2	3
	0	2	5
L	0	6	7

Solution:
$\begin{bmatrix} 1 & 2 & 3 & & 1 & 0 & 0 \\ 0 & 2 & 5 & & 0 & 1 & 0 \\ 0 & 6 & 7 & & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2 \to R_2} \begin{bmatrix} 1 & 2 & 3 & & 1 & 0 & 0 \\ 0 & 1 & 5/2 & & 0 & 1/2 & 0 \\ 0 & 6 & 7 & & 0 & 0 & 1 \end{bmatrix}$
$\xrightarrow{R_3 - 6R_2 \to R_3} \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 5/2 & 0 & 1/2 & 0 \\ 0 & 0 & -8 & 0 & -3 & 1 \end{bmatrix}$
$\xrightarrow{-\frac{1}{8}R_3 \to R_3} \begin{bmatrix} 1 & 2 & 3 & & 1 & 0 & 0 \\ 0 & 1 & 5/2 & & 0 & 1/2 & 0 \\ 0 & 0 & 1 & & 0 & 3/8 & -1/8 \end{bmatrix}$
$\frac{R_2 - \frac{5}{2}R_3 \to R_2}{\longrightarrow} \left[\begin{array}{ccccccc} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & -7/16 & 5/16 \\ 0 & 0 & 1 & 0 & 3/8 & -1/8 \end{array} \right]$
$\xrightarrow{R_1 - 3R_3 \to R_1} \begin{bmatrix} 1 & 2 & 0 & & 1 & -9/8 & 3/8 \\ 0 & 1 & 0 & & 0 & -7/16 & 5/16 \\ 0 & 0 & 1 & & 0 & 3/8 & -1/8 \end{bmatrix}$
$\xrightarrow{R_1 - 2R_2 \to R_1} \begin{bmatrix} 1 & 0 & 0 & & 1 & -1/4 & -1/4 \\ 0 & 1 & 0 & & 0 & -7/16 & 5/16 \\ 0 & 0 & 1 & & 0 & 3/8 & -1/8 \end{bmatrix}$
So the inverse is $\begin{bmatrix} 1 & -1/4 & -1/4 \\ 0 & -7/16 & 5/16 \\ 0 & 3/8 & -1/8 \end{bmatrix}$

(b) Let A be the matrix from the previous question and suppose that BC = A where B and C are both 3×3 matrices and B is as shown below. Find C^{-1} .

	3	2	1]	
B =	0	1	0	
	1	2	1	

Solution: It is possible to solve this problem by first finding the inverse of B, multiplying BC = A by B^{-1} on both sides to get $C = B^{-1}A$ and then finding the inverse of $B^{-1}A$. But that's a lot of effort. Instead, lets first observe that if we multiply BC = A on both sides by A^{-1} then we get $A^{-1}(BC) = A^{-1}A = I$. So $(A^{-1}B)C = I$ and by the definition of the matrix inverse, that means that $A^{-1}B$ is the inverse of C. We already found A^{-1} in part (a) and we know what B is. So we can calculate

$$C^{-1} = A^{-1}B = \begin{bmatrix} 1 & -1/4 & -1/4 \\ 0 & -7/16 & 5/16 \\ 0 & 3/8 & -1/8 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 \\ 0 & 1 & 0 \\ -1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 13/4 & 5/4 & 3/4 \\ -5/16 & 3/16 & 5/16 \\ 1/8 & 1/8 & -1/8 \end{bmatrix}$$

3. True or false:

(a) The following vector is an eigenvector of the following matrix.

$$\begin{bmatrix} 0\\1\\2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0\\0 & 3 & 4\\0 & 4 & 9 \end{bmatrix}$$

Solution: True. Multiplying the matrix by the vector gives

Since this is equal to 11 times the original vector, the original vector is an eigenvector of the matrix (with eigenvalue 11).

 $\left[\begin{array}{c} 0\\11\\22\end{array}\right]$

(b) If v is an eigenvector of A then v is also an eigenvector of 5A.

Solution: True. Suppose v is an eigenvector of A with eigenvalue λ . So by definition, $Av = \lambda v$. Thus $(5A)v = 5(Av) = 5(\lambda v) = (5\lambda)v$. So v is an eigenvector of 5A with eigenvalue 5λ .

(c) If v is an eigenvector of A and of B then it is also an eigenvector of AB.

Solution: True. Suppose v is an eigenvector of A with eigenvalue λ_1 and also an eigenvalue of B with eigenvalue λ_2 . So by definition, $Av = \lambda_1 v$ and $Bv = \lambda_2 v$. Therefore

$$(AB)v = A(Bv) = A(\lambda_2 v) = \lambda_2(Av) = \lambda_2(\lambda_1 v) = (\lambda_2 \lambda_1)v.$$

So v is an eigenvector of AB with eigenvalue $\lambda_2 \lambda_1$.

(d) If v is an eigenvector of an invertible matrix A then it is also an eigenvector of A^{-1} .

Solution: True. Suppose v is an eigenvector of A with eigenvalue λ . So by definition $Av = \lambda v$. Multiplying both sides by A^{-1} gives us

$$A^{-1}(Av) = A^{-1}(\lambda v)$$
$$(A^{-1}A)v = \lambda(A^{-1}v)$$
$$Iv = \lambda(A^{-1}v)$$
$$v = \lambda(A^{-1}v).$$

The main idea at this point is just to divide both sides by λ . But to do that, we need to know that λ is not zero. But if λ were zero then by the last line above, v would have to be the all-zeros vector. Since v is an eigenvector, it is by definition not the all-zeros vector. So λ is not zero, and dividing the last equation above by λ gives us

$$\frac{1}{\lambda}v = A^{-1}v$$

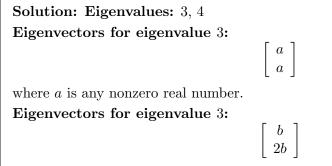
and thus v is an eigenvector of A^{-1} with eigenvalue $1/\lambda$.

(e) If v is an eigenvector of A then v is also an eigenvector of A^5 .

Solution: True. This is essentially the same as part (c). If v is an eigenvector of A with eigenvalue λ then $A^5v = \lambda^5 v$ and so v is an eigenvector of A^5 with eigenvalue λ^5 .

- 4. Find the eigenvalues and eigenvectors of the following matrices.
 - (a)

 $\left[\begin{array}{rrr} 2 & 1 \\ -2 & 5 \end{array}\right]$



where b is any nonzero real number.

(b)

$$\left[\begin{array}{rrr} 2 & 1 \\ 0 & 2 \end{array}\right]$$

Solution: Eigenvalues: 2 Eigenvectors for eigenvalue 2:

 $\left[\begin{array}{c} a\\ 0\end{array}\right]$

where a is any nonzero real number.

Comment: Note that there is only one eigenvalue even though the matrix is 2×2 . This can happen sometimes, though it is not the typical scenario.

(c)

$$\left[\begin{array}{rrr} 1/2 & -3/5 \\ 3/4 & 11/10 \end{array}\right]$$

Solution: Eigenvalues: $\frac{4}{5} + \frac{3}{5}i$ and $\frac{4}{5} - \frac{3}{5}i$. Eigenvectors for eigenvalue $\frac{4}{5} + \frac{3}{5}i$:

$$\left[\begin{array}{c} \left(-\frac{2}{5}+\frac{4}{5}i\right)a\\ a\end{array}\right]$$

where a is any nonzero number.

Eigenvectors for eigenvalue $\frac{4}{5} + \frac{3}{5}i$:

$$\left[\begin{array}{c} \left(-\frac{2}{5}-\frac{4}{5}i\right)b\\b\end{array}\right]$$

where b is any nonzero number.

- 5. Challenge Question: When does a 2×2 matrix whose entries are all integers have an inverse whose entries are all integers? What about for an $n \times n$ matrix?
- 6. Challenge Question: Let p(x) be a degree *n* polynomial. Can you always find an $n \times n$ matrix whose characteristic polynomial is p?