MATH 10B, SPRING 2017, QUIZ 8

(1) Suppose you roll a die 100 times and 30 of the rolls are fives. Find a 95% confidence interval for the probability p of rolling a five.

If $\hat{\mu}$ is our estimate for the mean, Var is our estimate for the variance, and n is the number of trials then the formula for the 95% confidence interval is

$$\left(\widehat{\mu} - 2\sqrt{\frac{\widehat{\operatorname{Var}}}{n}}, \widehat{\mu} + 2\sqrt{\frac{\widehat{\operatorname{Var}}}{n}}\right).$$

We are trying to estimate the mean of a Bernoulli random variable, so if \hat{p} is our estimate for the mean then our estimate for the variance is $\hat{p}(1-\hat{p})$. And based on the given data, our estimate for the mean is

 $\widehat{p} = \frac{30}{100}.$

Thus

$$\widehat{\operatorname{Var}} = \frac{30}{100} \left(1 - \frac{30}{100} \right) = \frac{21}{100}.$$

There are 100 trials so the 95% confidence interval is

$$\left(\frac{30}{100} - 2\sqrt{\frac{21}{100^2}}, \frac{30}{100} + 2\sqrt{\frac{21}{100^2}}\right)$$

(2) Suppose you want to check if two random variables, X and Y, are independent. Assume that both X and Y both take only the values 0 and 1. You collect some data and compile the following table of observations, which records how many times each possible outcome occurred.

	$\mathbf{X} = 0$	X = 1
Y = 0	300	100
Y = 1	200	400

(a) Fill in the following table of expected frequencies (i.e. assuming the null hypothesis that the two variables are independent). You do not need to simplify your answers.

Date: April 12, 2017.

	X = 0	X = 1
Y = 0	$\frac{500\cdot400}{1000}$	$\frac{500\cdot400}{1000}$
Y = 1	$\frac{500 \cdot 600}{1000}$	$\frac{500 \cdot 600}{1000}$

(b) Calculate the χ^2 statistic for the given data. You do not need to simplify your answer.

(c) What is the number of degrees of freedom for the χ^2 test on the given data?

(number of possible values of Y - 1)(number of possible values of X - 1) = (2 - 1)(2 - 1) = 1.