MATH 54 – HINTS TO HOMEWORK 3

PEYAM TABRIZIAN

Here are a couple of hints to Homework 3. Enjoy!

SECTION 1.5: SOLUTION SETS OF LINEAR SYSTEMS

1.5.14. The line that goes through	$\begin{bmatrix} 0\\ 3\\ 2\\ 0\end{bmatrix}$	and with 'slope'	$\begin{bmatrix} 5\\-2\\5\\1 \end{bmatrix}$	
---	--	------------------	---	--

1.5.24.

- (a) $\mathbf{F} (\mathbf{x} = \mathbf{0} \text{ is always a solution})$
- (b) **F** (I leave it up to you to come up with such an equation)
- (c) **T**
- (d) **T** (Because then $\mathbf{b} = A\mathbf{0} = \mathbf{0}$)

1.5.29. Nontrivial means $\mathbf{x} \neq \mathbf{0}$. The best way to do this is to draw a picture of what the reduced-echelon form of the matrix looks like! Also, for (b), if one of the rows of A is a row of zeros, then the equation $A\mathbf{x} = \mathbf{b}$ has no solution (for some b).

SECTION 1.7: LINEAR INDEPENDENCE

1.7.1, 1.7.5. Row-reduce (after putting everything in a matrix, if necessary). If you get n pivots, then the set is linearly independent. Else, it's linearly dependent.

1.7.11. Row-reduce!

1.7.17. A set with the zero-vector is always linearly dependent.

Date: Wednesday, September 10th, 2014.

PEYAM TABRIZIAN

1.7.21.

- (a) **F** (the equation $A\mathbf{x} = \mathbf{0}$ always has the trivial solution, no matter what the columns of A look like!)
- (b) **F** (for example, $S = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0 \end{bmatrix} \right\}$ doesn't satisfy this! The

correct statement should be: there is some vector such that \cdots)

- (c) **T** (in other words, 5 vectors in \mathbb{R}^4 are linearly dependent)
- (d) \mathbf{T} (otherwise the set would be linearly independent)

1.7.23. This matrix can only have one or no pivots (in the last case, the matrix is the zero-matrix). This is because if the matrix has 2 pivots, the columns would be linearly independent.

1.7.33. Remember that a set is linearly dependent if there's a relationship between the vectors in the set. Also, a set with the zero vector is always linearly dependent.

1.7.36. FALSE (give me explicit examples of vectors such that $v_1 = v_2$ and v_3 linearly independent from v_1 and v_2 ! The point is for linear independence, you have to consider the set as a whole!)

2