Here are a couple of hints to Homework 14. Enjoy!

SECTION 5.3: DIAGONALIZATION

5.3.1, 5.3.3. If \(A = PDP^{-1} \), then \(A^k = PD^kP^{-1} \)

5.3.5. The eigenvalues are just the diagonal entries of \(D \), and the eigenvectors are the corresponding columns of \(P \)

5.3.7, 5.3.11, 5.3.17. All you have to do is to find \(D \) and \(P \) so that \(A = PDP^{-1} \). To find \(D \), find the eigenvalues. To find \(P \), find the eigenvectors, and put them together in a matrix.

5.3.21.
(a) F
(b) T
(c) F
(d) F

SECTION 5.4: EIGENVECTORS AND LINEAR TRANSFORMATIONS

5.4.3. Remember that \(e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = (1, 0, 0) \) etc. To find the matrix in (c), just put the answers you find in (b) together in a matrix. It’s that easy!

5.4.7. For every polynomial \(p = 1, t, t^2 \), calculate \(T(p) \), and express your answer in terms of \(1, t, t^2 \). The coefficients give you each column of your matrix.

5.4.15. Find the eigenvectors of \(A \) (that’s sort of the point of this section)