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This review focuses on the linear algebra material from after midterm 2.
Since the final exam is cumulative, make sure to look over the review prob-
lems from Midterm 1 and Midterm 2 as well.

1 Symmetric matrices

Problem 1

Find a diagonal matrix D and an orthogonal matrix P such that A = PDP T ,
where

A =

3 1 1
1 3 1
1 1 3



2 Least squares

Problem 2

Find the least squares solution and the least-squares error to Ax = b, where:

A =

4 0
0 2
1 1

 , b =

 2
0
11



1



Problem 3

Let:

A =

2 3
2 4
1 1

 , b =

7
3
1


(a) Find the QR−decomposition of A. (apparently this is fair game for

the exam)

(b) Find the orthogonal projection of b on Col(A)

(c) Use (b) to find the least-squares solution of Ax = b

(d) Use A = QR to find the least-squares solution of Ax = b

3 Inner product spaces

Problem 4

Find the orthogonal projection of f(x) = x on W and use this to find a
function g(x) orthogonal to W , where:

W = Span {sin(x), cos(x), cos(2x)}

with respect to the inner product:

f · g =

π∫
−π

f(x)g(x)dx
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4 True/False Extravaganza

Problem 5

(a) Any two linearly independent eigenvectors of a symmetric matrix are
orthogonal

(b) If Q is orthogonal, then QQT = I

(c) The Gram-Schmidt process applied to the columns of a matrix A pre-
serves the column space of A

(d) If A is orthogonal, then Row(A) = Col(A)

(e) For any functions f and g, we have:

∫ 1

0

f(x)g(x)dx ≤
(∫ 1

0

(f(x))2 dx

) 1
2
(∫ 1

0

(g(x))2 dx

) 1
2

(f) The equation Ax = b always has a least-squares solution.

(g) The equation Ax = b cannot have more than one least-squares solution.
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