MATH 54 – MOCK MIDTERM 2 – SOLUTIONS

PEYAM Ryan Tabrizian

1. (30 points, 5 pts each)

Label the following statements as T or F. Make sure to JUSTIFY YOUR ANSWERS!!! You may use any facts from the book or from lecture.

(a) If \(A = \{ a_1, a_2, a_3 \} \) and \(D = \{ d_1, d_2, d_3 \} \) are bases for \(V \), and \(P \) is the matrix whose \(i \)th column is \([d_i]_A\), then for all \(x \) in \(V \), we have \([x]_D = P [x]_A\)

FALSE

First of all, \(P = \begin{bmatrix} [d_1]_A & [d_2]_A & [d_3]_A \end{bmatrix} = A^P \leftarrow D \) (remember, you always evaluate with respect to the new, cool basis, here it is \(A \)), so we should have:

\[[x]_A = A^P \leftarrow D \ [x]_D = P [x]_D \]

And not the opposite!

(b) A 3 \(\times \) 3 matrix \(A \) with only one eigenvalue cannot be diagonalizable

SUPER FALSE!!!!!!!!!

Remember that to check if a matrix is not diagonalizable, you really have to look at the eigenvectors!

Date: Monday, October 24th, 2011.
For example, \(A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \) has only eigenvalue 2, but is diagonalizable (it’s diagonal!). Or you can choose \(A \) to be the \(O \) matrix, or the identity matrix, this also works!

(c) If \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) are 2 eigenvectors of \(A \) corresponding to 2 different eigenvalues \(\lambda_1 \) and \(\lambda_2 \), then \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) are linearly independent!

\textbf{TRUE} (finally!)

\textbf{Note:} The proof is a bit complicated, but I’ve seen this on a past exam! I think at that point, the professor wanted to get revenge on his students for not coming to lecture!

Remember that eigenvectors have to be nonzero!

Now, assume \(a\mathbf{v}_1 + b\mathbf{v}_2 = 0 \).

Then apply \(A \) to this to get:

\[A(a\mathbf{v}_1 + b\mathbf{v}_2) = A(0) = 0 \]

That is:

\[aA(\mathbf{v}_1) + bA(\mathbf{v}_2) = 0 \]

\[a\lambda_1\mathbf{v}_1 + b\lambda_2\mathbf{v}_2 = 0 \]

However, we can also multiply the original equation by \(\lambda_1 \) to get:

\[a\lambda_1\mathbf{v}_1 + b\lambda_1\mathbf{v}_2 = 0 \]

Subtracting this equation from the one preceding it, we get:

\[b(\lambda_1 - \lambda_2)\mathbf{v}_2 = 0 \]

So

\[b(\lambda_1 - \lambda_2) = 0 \]
But $\lambda_1 \neq \lambda_2$, so $\lambda_1 - \lambda_2 \neq 0$, hence we get $b = 0$.

But going back to the first equation, we get:

$$a v_1 = 0$$

So $a = 0$.

Hence $a = b = 0$, and we’re done!

(d) If a matrix A has orthogonal columns, then it is an orthogonal matrix.

FALSE

Remember that an orthogonal matrix has to have orthonormal columns!

(e) For every subspace W and every vector y, $y - \text{Proj}_W y$ is orthogonal to $\text{Proj}_W y$ (proof by picture is ok here)

TRUE

Draw a picture! $\text{Proj}_W y$ is just another name for \hat{y}.

(f) If y is already in W, then $\text{Proj}_W y = y$

TRUE

Again, draw a picture!

If you want a more mathematical proof, here it is:

Let $B = \{w_1, \cdots, w_p\}$ be an orthogonal basis for W ($p = \text{Dim}(W)$).

Then $y = \left(\frac{y \cdot w_1}{w_1 \cdot w_1}\right) w_1 + \cdots + \left(\frac{y \cdot w_p}{w_p \cdot w_p}\right) w_p$.

But then, by definition of $\text{Proj}_W y = \hat{y}$, we get:
$$\hat{y} = \left(\frac{y \cdot w_1}{w_1 \cdot w_1} \right) w_1 + \cdots + \left(\frac{y \cdot w_p}{w_p \cdot w_p} \right) w_p = y$$

So $\hat{y} = y$ in this case.
2. (20 points) Find a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$, where:

$$A = \begin{bmatrix} 7 & -6 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 7 \end{bmatrix}$$

Eigenvalues: $det(A - \lambda I) = 0$ (expanding along last column), which gives $(\lambda - 1)(\lambda - 7)^2 = 0$, so $\lambda = 1, 7$

$\lambda = 1$

$Nul(A - I) = Nul \begin{bmatrix} 6 & -6 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & 6 \end{bmatrix} = Nul \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} = Span \begin{bmatrix} -2 \\ -2 \\ 1 \end{bmatrix}$

$\lambda = 7$

$Nul(A - 7I) = Nul \begin{bmatrix} 0 & -6 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix} = Nul \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = Span \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

Hence:

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{bmatrix}, P = \begin{bmatrix} -2 & 1 & 0 \\ -2 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
3. (10 points) Define $T : P_3 \rightarrow P_3$ by:

$$T(p(t)) = tp''(t) - 2p'(t)$$

Find the matrix A of T relative to the basis $B = \{1, t, t^2, t^3\}$ of P_3

First calculate:

- $T(1) = t(0) - 2(0) = 0$
- $T(t) = t(0) - 2(1) = -2$
- $T(t^2) = t(2) - 2(2t) = -2t$
- $T(t^3) = t(6t) - 2(3t^2) = 6t^2 - 6t^2 = 0$

Now evaluate all those vectors with respect to B:

- $[T(1)]_B = [0]_B = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
- $[T(t)]_B = [-2]_B = \begin{bmatrix} -2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
- $[T(t^2)]_B = [-2t]_B = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 0 \end{bmatrix}$
- $[T(t^3)]_B = [0]_B = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

Putting everything together, we get that the matrix of T relative to B is:
4. (15 points) Let $B = \left\{ \begin{bmatrix} 7 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \end{bmatrix} \right\}, C = \left\{ \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ 2 \end{bmatrix} \right\}$.

(a) Find the change-of-coordinates matrix from B to C

We want to find $P_{C \leftarrow B}$.

\[
\begin{bmatrix} 4 & 5 \\ 1 & 2 \end{bmatrix}
\begin{bmatrix} 7 \\ -2 \end{bmatrix}
\begin{bmatrix} 2 \\ -1 \end{bmatrix}
\begin{bmatrix} 4 & 5 \\ 0 & 1 \end{bmatrix}
\begin{bmatrix} 7 & 2 \\ 15 & 6 \end{bmatrix}
\begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}
\begin{bmatrix} 32 & 12 \\ -5 & -2 \end{bmatrix}
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\begin{bmatrix} 8 & 3 \\ -5 & -2 \end{bmatrix}
\]

Hence:

\[
P_{C \leftarrow B} = \begin{bmatrix} 8 & 3 \\ -5 & -2 \end{bmatrix}
\]

(b) Find $[x]_C$, where $[x]_B = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$

We have:

\[
[x]_C = P_{C \leftarrow B} [x]_B = \begin{bmatrix} 8 & 3 \\ -5 & -2 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 47 \\ -30 \end{bmatrix}
\]
5. (20 points, 10 points each)

(a) Find a basis for $\text{Row}(A)$ and $\text{Col}(A)$, where:

$$A = \begin{bmatrix} 2 & -3 & 6 & 2 & 5 \\ -2 & 3 & -3 & -3 & -4 \\ 4 & -6 & 9 & 5 & 0 \\ -2 & 3 & 3 & -4 & 1 \end{bmatrix}$$

If you row-reduce A, you get that:

$$A \sim \begin{bmatrix} 2 & -3 & 6 & 2 & 5 \\ 0 & 0 & 3 & -1 & 1 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Note: You could have row-reduced it further, but no need!

Notice that the pivots are in the all 4 rows and the 1st, 3rd, 4th, and 5th column respectively, hence:

Basis for Row(A):

$$B = \begin{bmatrix} 2 \\ -3 \\ 6 \\ 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Basis for Col(A):

$$B = \begin{bmatrix} 2 \\ -2 \\ 4 \\ -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 6 \\ -3 \\ 9 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 5 \\ -4 \\ 5 \end{bmatrix}, \begin{bmatrix} 5 \\ -4 \\ 0 \\ -4 \\ 1 \end{bmatrix}$$
(b) What is $\text{Rank}(A)$? What is $\text{Dim}(\text{Nul}(A))$?

$\text{Rank}(A) = 4$ (number of pivots)

$\text{Dim}(\text{Nul}(A)) = 5 - \text{Rank}(A) = 5 - 4 = 1$ (by Rank-Nullity theorem)

6. (15 points)

(a) Find an invertible matrix P and a matrix C of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ such that $A = PCP^{-1}$, where:

$$A = \begin{bmatrix} 2 & -2 \\ 1 & 0 \end{bmatrix}$$

Eigenvalues:

The characteristic polynomial of A is: $\det(A - \lambda I) = (\lambda - 2)(\lambda) + 2 = \lambda^2 - 2\lambda + 2 = 0$ iff $\lambda = 1 \pm i$

Eigenvalue for $\lambda = 1 - i$

$$\text{Nul}(A-(1-i)I) = \text{Nul}\left(\begin{bmatrix} 1+i & -2 \\ 1 & -1+i \end{bmatrix}\right) = \text{Nul}\left(\begin{bmatrix} 1 & -1+i \\ 0 & 0 \end{bmatrix}\right) = \text{Span}\left\{\begin{bmatrix} 1-i \\ 1 \end{bmatrix}\right\}$$

So an eigenvector corresponding to $\lambda = 1 - i$ is $v = \begin{bmatrix} 1-i \\ 1 \end{bmatrix}$

Finding P and C:

First of all, for P, we have:

$$\text{Re}(v) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \text{Im}(v) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
Hence: \(P = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \).

As for \(C \), we have \(Re(\lambda) = 1, Im(\lambda) = -1 \). Now remember that you put those values on the first \textbf{ROW} of \(C \), and you get:

\[
C = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}
\]

(Remember that the diagonal entries of \(C \) are equal and the nondiagonal ones are opposite of each other)

(b) Write \(C \) as a composition of a rotation and a scaling.

\(C \) is a rotation by \(\phi \) followed by a scaling \(r \).

\(r \) is given by: \(r = \sqrt{\det(C)} = \sqrt{2} \), hence:

\[
C = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}
\]

If you compare this latter matrix with the rotation matrix \(\begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \), you should realize that \(\phi = \frac{\pi}{4} \).

Hence \(C \) is a rotation by \(\phi = \frac{\pi}{4} \) followed by a scaling \(r = \sqrt{2} \).