This is a closed book exam, no notes allowed. It consists of 6 problems, each worth 10 points, of which you must complete 5. **Choose one problem not to be graded by crossing it out in the box below.** If you forget to cross out a problem, we will roll a die to choose one for you.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Maximum Score</th>
<th>Your Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total Possible</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
1) Decide if the following statements are ALWAYS TRUE (T) or SOMETIMES FALSE (F). You do not need to justify your answers. (Correct answers receive 2 points, incorrect answers -2 points, blank answers 0 points.)

a) If v_1, v_2, v_3, v_4 are linearly independent vectors in \mathbb{R}^6, then $v_1 + v_2, v_3 - v_4$ are linearly independent vectors.

b) The following linear system is inconsistent

\[
\begin{align*}
-2x_1 &+ 4x_2 - 6x_3 &+ 8x_4 &= 10 \\
x_1 &- 2x_2 + 3x_3 &- 4x_4 &= -5
\end{align*}
\]

c) If A is a 3×2 matrix and B is a 2×3 matrix, then the rank of the 3×3 matrix AB must be less than or equal to 2.

d) If two $m \times n$ matrices A and B have the same reduced row echelon form, then they have the same column spaces.

e) \[
\det \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 & 1 \\
1 & 1 & 3 & 1 & 1 \\
1 & 1 & 1 & 4 & 1 \\
1 & 1 & 1 & 1 & 5
\end{bmatrix} = 24
\]
2) Circle all of the answers that satisfy the questions below. It is possible that any number of
the answers (including none) satisfy the questions. (Complete solutions receive 2 points, partial
solutions 1 points, but any incorrect circled answer leads to 0 points.)

a) Let \(A \) be an \(m \times n \) matrix. Which of the following is equal to \(m \)?
 i) \(\text{rank}(A) \)
 ii) \(\text{dim} \text{Col}(A) + \text{dim} \text{Nul}(A) \)
 iii) \(\text{rank}(A^T) \)
 iv) \(\text{dim} \text{Col}(A^T) - \text{dim} \text{Nul}(A^T) \)
 v) \(\text{dim} \text{Col}(A^T) + \text{dim} \text{Nul}(A^T) \)

b) Which of the following matrices is in reduced row echelon form?
 i) \[
 \begin{bmatrix}
 1 & 1 & 2 \\
 0 & 0 & 1 \\
 \end{bmatrix}
 \]
 ii) \[
 \begin{bmatrix}
 1 & 2 & 0 \\
 0 & 0 & 1 \\
 \end{bmatrix}
 \]
 iii) \[
 \begin{bmatrix}
 1 & 0 & 2 & 1 \\
 0 & 0 & 1 \\
 0 & 0 & 0 \\
 \end{bmatrix}
 \]
 iv) \[
 \begin{bmatrix}
 1 & 0 & -2 & 1 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 1 \\
 \end{bmatrix}
 \]
 v) \[
 \begin{bmatrix}
 1 & -2 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1 \\
 \end{bmatrix}
 \]

c) Which of the following conditions insures an \(m \times n \) matrix \(A \) is invertible?
 i) \(m = n \).
 ii) There exists an \(n \times m \) matrix \(B \) such that \(AB = I_m \).
 iii) The row echelon form of \(A \) has the same number of pivot rows as pivot columns.
 iv) \(Ax = b \) has a unique solution \(x \) for every \(b \).
 v) \(A \) is injective and surjective.

d) Which of the following \(T : \mathbb{R}^2 \to \mathbb{R} \) is a linear transformation?
 i) \(T(x, y) = x + y + 1 \)
 ii) \(T(x, y) = x - 2y \)
 iii) \(T(x, y) = x^2 + y^2 - (x + y)^2 \)
 iv) \(T(x, y) = 6(x + 1) + 2(y - 3) \)
 v) \(T(x, y) = 0 \)

e) Suppose \(T : \mathbb{R}^3 \to \mathbb{R}^3 \) has 2-dimensional range and we know
 \[
 T(e_1) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad T(e_3) = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}
 \]
 Which of the following is a possible value of \(T(e_2) \)?
 i) \[
 \begin{bmatrix}
 -1 \\
 -1 \\
 2 \\
 \end{bmatrix}
 \]
 ii) \[
 \begin{bmatrix}
 -2 \\
 1 \\
 1 \\
 \end{bmatrix}
 \]
 iii) \[
 \begin{bmatrix}
 3 \\
 -1 \\
 0 \\
 \end{bmatrix}
 \]
 iv) \[
 \begin{bmatrix}
 0 \\
 0 \\
 0 \\
 \end{bmatrix}
 \]
 v) \[
 \begin{bmatrix}
 2 \\
 0 \\
 -1 \\
 \end{bmatrix}
 \]
3) Consider the matrix

a) (5 points) Find bases for the column space and null space of

\[
A = \begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & -1 & -1 & 1
\end{bmatrix}
\]

b) (5 points) For what values of \(c \) is the vector

\[
v = \begin{bmatrix}
c \\
2c \\
c^2
\end{bmatrix}
\]

in the column space of \(A \)?
4) (10 points) A linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ satisfies the following:

\[
T\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad T\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}
\]

Find the standard matrix of T.

5) Decide if each of the following matrices is invertible, and either find its inverse or justify why it is not invertible.

a) (5 points)

\[
A = \begin{bmatrix}
1 & 0 & 1 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

b) (5 points)

\[
B = \begin{bmatrix}
1 & 2 & -1 & 1 \\
-4 & 4 & 2 & 2 \\
-2 & -4 & -4 & -2 \\
1 & 2 & -2 & 1
\end{bmatrix}
\]
6) (10 points) Suppose that v_1, \ldots, v_k are vectors in \mathbb{R}^n and that A is an $m \times n$ matrix. Prove that if Av_1, \ldots, Av_k are linearly independent in \mathbb{R}^m, then v_1, \ldots, v_k are linearly independent.