MATH 54-MOCK MIDTERM 2

PEYAM RYAN TABRIZIAN

Name:
Instructions: This is a mock midterm, designed to give you extra practice for the actual midterm. Good luck!!!

1		50
2		20
3		20
4		10
5		10
6		10
7		15
8		10
9		20
10		15
Total		180

1. (50 points, 5 pts each)

Label the following statements as \mathbf{T} or \mathbf{F}.
Make sure to JUSTIFY YOUR ANSWERS!!! You may use any facts from the book or from lecture.
(a) If A and B are square matrices, then $\operatorname{det}(A+B)=\operatorname{det}(A)+$ $\operatorname{det}(B)$.
(b) If $\mathcal{A}=\left\{\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \mathbf{a}_{\mathbf{3}}\right\}$ and $\mathcal{D}=\left\{\mathbf{d}_{\mathbf{1}}, \mathbf{d}_{\mathbf{2}}, \mathbf{d}_{\mathbf{3}}\right\}$ are bases for V, and P is the matrix whose i th column is $\left[\mathbf{d}_{\mathbf{i}}\right]_{\mathcal{A}}$, then for all \mathbf{x} in V, we have $[\mathbf{x}]_{\mathcal{D}}=P[\mathbf{x}]_{\mathcal{A}}$
(c) If $\operatorname{Nul}(A)=\{\mathbf{0}\}$, then A is invertible.
(d) A 3×3 matrix A with only one eigenvalue cannot be diagonalizable
(e) \mathbb{R}^{2} is a subspace of \mathbb{R}^{3}
(f) If W is a subspace of V and \mathcal{B} is a basis for V, then some subset of \mathcal{B} is a basis for W.
(g) If $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are 2 eigenvectors corresponding to 2 different eigenvalues λ_{1} and λ_{2}, then $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are linearly independent!
(h) If a matrix A has orthogonal columns, then it is an orthogonal matrix.
(i) For every subspace W and every vector $\mathbf{y}, \mathbf{y}-\operatorname{Proj}_{W} \mathbf{y}$ is orthogonal to $\operatorname{Proj}_{W} \mathbf{y}$ (proof by picture is ok here)
(j) If \mathbf{y} is already in W, then $\operatorname{Proj}_{W} \mathbf{y}=\mathbf{y}$
2. (20 points) Find a diagonal matrix D and an invertible matrix P such that $A=P D P^{-1}$, where:

$$
A=\left[\begin{array}{ccc}
7 & -6 & 0 \\
0 & 1 & 0 \\
0 & 3 & 7
\end{array}\right]
$$

3. (20 points) Use the Gram-Schmidt process to obtain an orthonormal basis of $W=\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$, where:

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
3
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}
6 \\
-3 \\
1 \\
11
\end{array}\right]
$$

4. (10 points) Find the determinant of the following matrix A :

$$
A=\left[\begin{array}{cccccc}
1 & 42 & 536 & 789 & 4201 & 123456789 \\
0 & 1 & 2011 & 2012 & \pi m & \text { Dolphin } \\
0 & 0 & 2 & 0 & 4 & 5 \\
0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 4 & 0 & 2 & -1
\end{array}\right]
$$

Note: The answer may surprise you :)
5. (10 points) Find a least squares solution to the following system $A \mathrm{x}=\mathrm{b}$, where:

$$
A=\left[\begin{array}{cc}
2 & 0 \\
1 & -1 \\
-1 & 2 \\
0 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

6. (10 points) Define $T: P_{3} \rightarrow P_{3}$ by:

$$
T(p(t))=t p^{\prime \prime}(t)-2 p^{\prime}(t)
$$

Find the matrix A of T relative to the basis $\mathcal{B}=\left\{1, t, t^{2}, t^{3}\right\}$ of P_{3}
7. (15 points) Let $\mathcal{B}=\left\{\left[\begin{array}{c}7 \\ -2\end{array}\right],\left[\begin{array}{c}2 \\ -1\end{array}\right]\right\}, \mathcal{C}=\left\{\left[\begin{array}{l}4 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 2\end{array}\right]\right\}$.
(a) Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}
(b) Find $[\mathbf{x}]_{\mathcal{C}}$, where $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}4 \\ 5\end{array}\right]$
8. (10 points) Find the orthogonal projection of t^{2} onto the subspace W spanned by $\{1, t\}$, with respect to the following inner product:

$$
\langle p, q\rangle=\int_{-1}^{1} p(t) q(t) d t
$$

9. (20 points, 10 points each)
(a) Find a basis for $\operatorname{Row}(A)$ and $\operatorname{Col}(A)$, where:

$$
A=\left[\begin{array}{ccccc}
2 & -3 & 6 & 2 & 5 \\
-2 & 3 & -3 & -3 & -4 \\
4 & -6 & 9 & 5 & 0 \\
-2 & 3 & 3 & -4 & 1
\end{array}\right]
$$

(b) What is $\operatorname{Rank}(A)$? What is $\operatorname{Dim}(\operatorname{Nul}(A))$?
10. (15 points)
(a) Find an invertible matrix P and a matrix C of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ such that $A=P C P^{-1}$, where:

$$
A=\left[\begin{array}{cc}
2 & -2 \\
1 & 0
\end{array}\right]
$$

(b) Write C as a composition of a rotation and a scaling.

